-
Notifications
You must be signed in to change notification settings - Fork 509
/
Copy pathretinanet.py
330 lines (285 loc) · 11.3 KB
/
retinanet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
# Copyright (c) Qualcomm Innovation Center, Inc.
# All rights reserved
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import json
import os
import sys
from multiprocessing.connection import Client
import numpy as np
import torch
from executorch.backends.qualcomm.quantizer.quantizer import QuantDtype
from executorch.examples.qualcomm.utils import (
build_executorch_binary,
make_output_dir,
parse_skip_delegation_node,
setup_common_args_and_variables,
SimpleADB,
)
def get_instance():
import torchvision
from torchvision.models.detection import RetinaNet_ResNet50_FPN_V2_Weights
model = torchvision.models.detection.retinanet_resnet50_fpn_v2(
weights=RetinaNet_ResNet50_FPN_V2_Weights.DEFAULT
)
# the post-process part in vanilla forward method failed to be exported
# here we only gather the network structure for torch.export.export to work
def forward_without_metrics(self, image):
features = self.backbone(image)
return self.head(list(features.values()))
model.forward = lambda img: forward_without_metrics(model, img)
return model.eval()
def get_dataset(data_size, dataset_dir):
from torchvision import datasets, transforms
class COCODataset(datasets.CocoDetection):
def __init__(self, dataset_root):
self.images_path = os.path.join(dataset_root, "val2017")
self.annots_path = os.path.join(
dataset_root, "annotations/instances_val2017.json"
)
self.img_shape = (640, 640)
self.preprocess = transforms.Compose(
[
transforms.PILToTensor(),
transforms.ConvertImageDtype(torch.float),
transforms.Resize(self.img_shape),
transforms.Normalize(
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
),
]
)
with open(self.annots_path, "r") as f:
data = json.load(f)
categories = data["categories"]
self.label_names = {
category["id"]: category["name"] for category in categories
}
super().__init__(root=self.images_path, annFile=self.annots_path)
def __getitem__(self, index):
img, target = super().__getitem__(index)
bboxes, labels = [], []
for obj in target:
bboxes.append(self.resize_bbox(obj["bbox"], img.size))
labels.append(obj["category_id"])
# return empty list if no label exists
return (
self.preprocess(img),
torch.stack(bboxes) if len(bboxes) > 0 else [],
torch.Tensor(labels).to(torch.int) if len(labels) > 0 else [],
)
def resize_bbox(self, bbox, orig_shape):
# bypass if no label exists
if len(bbox) == 0:
return
y_scale = float(self.img_shape[0]) / orig_shape[0]
x_scale = float(self.img_shape[1]) / orig_shape[1]
# bbox: [(upper-left) x, y, w, h]
bbox[2] += bbox[0]
bbox[3] += bbox[1]
# rescale bbox according to image shape
bbox[0] = y_scale * bbox[0]
bbox[2] = y_scale * bbox[2]
bbox[1] = x_scale * bbox[1]
bbox[3] = x_scale * bbox[3]
return torch.Tensor(bbox)
dataset = COCODataset(dataset_root=dataset_dir)
test_loader = torch.utils.data.DataLoader(dataset=dataset, shuffle=True)
inputs, input_list = [], ""
bboxes, targets = [], []
for index, (img, boxes, labels) in enumerate(test_loader):
if index >= data_size:
break
inputs.append((img,))
input_list += f"input_{index}_0.raw\n"
bboxes.append(boxes)
targets.append(labels)
return inputs, input_list, bboxes, targets, dataset.label_names
def calculate_precision(
true_boxes, true_labels, det_boxes, det_labels, tp, fp, top_k, iou_thres
):
import torchvision
def collect_data(boxes, labels, top_k=-1):
# extract data up to top_k length
top_k = labels.size(0) if top_k == -1 else top_k
len_labels = min(labels.size(0), top_k)
boxes, labels = boxes[:len_labels, :], labels[:len_labels]
# how many labels do we have in current data
cls = set(labels[:len_labels].tolist())
map = {index: [] for index in cls}
# stack data in same class
for j in range(len_labels):
index = labels[j].item()
if index in cls:
map[index].append(boxes[j, :])
return {k: torch.stack(v) for k, v in map.items()}
preds = collect_data(det_boxes, det_labels, top_k=top_k)
targets = collect_data(true_boxes.squeeze(0), true_labels.squeeze(0))
# evaluate data with labels presenting in ground truth data
for index in targets.keys():
# there is no precision gain for predictions not present in ground truth data
if index in preds:
# targets shape: (M, 4), preds shape: (N, 4)
# shape after box_iou: (M, N), iou shape: (M)
# true-positive: how many predictions meet the iou threshold. i.e. k of M
# false-positive: M - true-positive = M - k
iou, _ = torchvision.ops.box_iou(targets[index], preds[index]).max(0)
tps = torch.where(iou >= iou_thres, 1, 0).sum().item()
tp[index - 1] += tps
fp[index - 1] += iou.nelement() - tps
def eval_metric(instance, heads, images, bboxes, targets, classes):
tp, fp = classes * [0], classes * [0]
head_label = ["cls_logits", "bbox_regression"]
# feature size should be changed if input size got altered
feature_size = [80, 40, 20, 10, 5]
feature_maps = [torch.zeros(1, 256, h, h) for h in feature_size]
for head, image, true_boxes, true_labels in zip(heads, images, bboxes, targets):
anchors = instance.anchor_generator(
image_list=image,
feature_maps=feature_maps,
)
num_anchors_per_level = [hw**2 * 9 for hw in feature_size]
# split outputs per level
split_head_outputs = {
head_label[i]: list(h.split(num_anchors_per_level, dim=1))
for i, h in enumerate(head)
}
split_anchors = [list(a.split(num_anchors_per_level)) for a in anchors]
# compute the detections (based on official post-process method)
detection = instance.postprocess_detections(
head_outputs=split_head_outputs,
anchors=split_anchors,
image_shapes=[image.image_sizes],
)
# no contribution to precision
if len(true_labels) == 0:
continue
# here we select top 10 confidence and iou >= 0.5 as the criteria
calculate_precision(
true_boxes=true_boxes,
true_labels=true_labels,
det_boxes=detection[0]["boxes"],
det_labels=detection[0]["labels"],
tp=tp,
fp=fp,
top_k=10,
iou_thres=0.5,
)
# remove labels which does not appear in current dataset
AP = torch.Tensor(
[
tp[i] * 1.0 / (tp[i] + fp[i]) if tp[i] + fp[i] > 0 else -1
for i in range(len(tp))
]
)
missed_labels = torch.where(AP == -1, 1, 0).sum()
mAP = AP.where(AP != -1, 0).sum() / (AP.nelement() - missed_labels)
return AP, mAP.item()
def main(args):
from pprint import PrettyPrinter
from torchvision.models.detection.image_list import ImageList
skip_node_id_set, skip_node_op_set = parse_skip_delegation_node(args)
# ensure the working directory exist
os.makedirs(args.artifact, exist_ok=True)
if not args.compile_only and args.device is None:
raise RuntimeError(
"device serial is required if not compile only. "
"Please specify a device serial by -s/--device argument."
)
model = get_instance()
# retrieve dataset
data_num = 100
# 91 classes appear in COCO dataset
n_classes, n_coord_of_bbox = 91, 4
inputs, input_list, bboxes, targets, label_names = get_dataset(
data_size=data_num, dataset_dir=args.dataset
)
pte_filename = "retinanet_qnn"
build_executorch_binary(
model,
inputs[0],
args.model,
f"{args.artifact}/{pte_filename}",
inputs,
skip_node_id_set=skip_node_id_set,
skip_node_op_set=skip_node_op_set,
quant_dtype=QuantDtype.use_8a8w,
shared_buffer=args.shared_buffer,
)
if args.compile_only:
sys.exit(0)
adb = SimpleADB(
qnn_sdk=os.getenv("QNN_SDK_ROOT"),
build_path=f"{args.build_folder}",
pte_path=f"{args.artifact}/{pte_filename}.pte",
workspace=f"/data/local/tmp/executorch/{pte_filename}",
device_id=args.device,
host_id=args.host,
soc_model=args.model,
shared_buffer=args.shared_buffer,
)
adb.push(inputs=inputs, input_list=input_list)
adb.execute()
# collect output data
output_data_folder = f"{args.artifact}/outputs"
make_output_dir(output_data_folder)
adb.pull(output_path=args.artifact)
predictions, classes = [], [n_classes, n_coord_of_bbox]
for i in range(data_num):
result = []
for j, dim in enumerate(classes):
data_np = np.fromfile(
os.path.join(output_data_folder, f"output_{i}_{j}.raw"),
dtype=np.float32,
)
result.append(torch.from_numpy(data_np).reshape(1, -1, dim))
predictions.append(result)
# evaluate metrics
AP, mAP = eval_metric(
instance=model,
heads=predictions,
images=[ImageList(img[0], tuple(img[0].shape[-2:])) for img in inputs],
bboxes=bboxes,
targets=targets,
classes=n_classes,
)
if args.ip and args.port != -1:
with Client((args.ip, args.port)) as conn:
conn.send(json.dumps({"mAP": mAP}))
else:
print("\nMean Average Precision (mAP): %.3f" % mAP)
print("\nAverage Precision of Classes (AP):")
PrettyPrinter().pprint(
{label_names[i + 1]: AP[i].item() for i in range(n_classes) if AP[i] != -1}
)
if __name__ == "__main__":
parser = setup_common_args_and_variables()
parser.add_argument(
"-a",
"--artifact",
help="path for storing generated artifacts by this example. "
"Default ./retinanet",
default="./retinanet",
type=str,
)
parser.add_argument(
"-d",
"--dataset",
help=(
"path to the validation folder of COCO2017 dataset. "
"e.g. --dataset PATH/TO/COCO (which contains 'val_2017' & 'annotations'), "
"dataset could be downloaded via http://images.cocodataset.org/zips/val2017.zip & "
"http://images.cocodataset.org/annotations/annotations_trainval2017.zip"
),
type=str,
required=True,
)
args = parser.parse_args()
try:
main(args)
except Exception as e:
if args.ip and args.port != -1:
with Client((args.ip, args.port)) as conn:
conn.send(json.dumps({"Error": str(e)}))
else:
raise Exception(e)