-
Notifications
You must be signed in to change notification settings - Fork 4.1k
/
Copy pathchatbot_tutorial.py
1371 lines (1216 loc) · 53.1 KB
/
chatbot_tutorial.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# -*- coding: utf-8 -*-
"""
Chatbot Tutorial
================
**Author:** `Matthew Inkawhich <https://github.com/MatthewInkawhich>`_
"""
######################################################################
# In this tutorial, we explore a fun and interesting use-case of recurrent
# sequence-to-sequence models. We will train a simple chatbot using movie
# scripts from the `Cornell Movie-Dialogs
# Corpus <https://www.cs.cornell.edu/~cristian/Cornell_Movie-Dialogs_Corpus.html>`__.
#
# Conversational models are a hot topic in artificial intelligence
# research. Chatbots can be found in a variety of settings, including
# customer service applications and online helpdesks. These bots are often
# powered by retrieval-based models, which output predefined responses to
# questions of certain forms. In a highly restricted domain like a
# company’s IT helpdesk, these models may be sufficient, however, they are
# not robust enough for more general use-cases. Teaching a machine to
# carry out a meaningful conversation with a human in multiple domains is
# a research question that is far from solved. Recently, the deep learning
# boom has allowed for powerful generative models like Google’s `Neural
# Conversational Model <https://arxiv.org/abs/1506.05869>`__, which marks
# a large step towards multi-domain generative conversational models. In
# this tutorial, we will implement this kind of model in PyTorch.
#
# .. figure:: /_static/img/chatbot/bot.png
# :align: center
# :alt: bot
#
# .. code-block:: python
#
# > hello?
# Bot: hello .
# > where am I?
# Bot: you re in a hospital .
# > who are you?
# Bot: i m a lawyer .
# > how are you doing?
# Bot: i m fine .
# > are you my friend?
# Bot: no .
# > you're under arrest
# Bot: i m trying to help you !
# > i'm just kidding
# Bot: i m sorry .
# > where are you from?
# Bot: san francisco .
# > it's time for me to leave
# Bot: i know .
# > goodbye
# Bot: goodbye .
#
# **Tutorial Highlights**
#
# - Handle loading and preprocessing of `Cornell Movie-Dialogs
# Corpus <https://www.cs.cornell.edu/~cristian/Cornell_Movie-Dialogs_Corpus.html>`__
# dataset
# - Implement a sequence-to-sequence model with `Luong attention
# mechanism(s) <https://arxiv.org/abs/1508.04025>`__
# - Jointly train encoder and decoder models using mini-batches
# - Implement greedy-search decoding module
# - Interact with trained chatbot
#
# **Acknowledgments**
#
# This tutorial borrows code from the following sources:
#
# 1) Yuan-Kuei Wu’s pytorch-chatbot implementation:
# https://github.com/ywk991112/pytorch-chatbot
#
# 2) Sean Robertson’s practical-pytorch seq2seq-translation example:
# https://github.com/spro/practical-pytorch/tree/master/seq2seq-translation
#
# 3) FloydHub Cornell Movie Corpus preprocessing code:
# https://github.com/floydhub/textutil-preprocess-cornell-movie-corpus
#
######################################################################
# Preparations
# ------------
#
# To get started, `download <https://zissou.infosci.cornell.edu/convokit/datasets/movie-corpus/movie-corpus.zip>`__ the Movie-Dialogs Corpus zip file.
# and put in a ``data/`` directory under the current directory.
#
# After that, let’s import some necessities.
#
import torch
from torch.jit import script, trace
import torch.nn as nn
from torch import optim
import torch.nn.functional as F
import csv
import random
import re
import os
import unicodedata
import codecs
from io import open
import itertools
import math
import json
# If the current `accelerator <https://pytorch.org/docs/stable/torch.html#accelerators>`__ is available,
# we will use it. Otherwise, we use the CPU.
device = torch.accelerator.current_accelerator().type if torch.accelerator.is_available() else "cpu"
print(f"Using {device} device")
######################################################################
# Load & Preprocess Data
# ----------------------
#
# The next step is to reformat our data file and load the data into
# structures that we can work with.
#
# The `Cornell Movie-Dialogs
# Corpus <https://www.cs.cornell.edu/~cristian/Cornell_Movie-Dialogs_Corpus.html>`__
# is a rich dataset of movie character dialog:
#
# - 220,579 conversational exchanges between 10,292 pairs of movie
# characters
# - 9,035 characters from 617 movies
# - 304,713 total utterances
#
# This dataset is large and diverse, and there is a great variation of
# language formality, time periods, sentiment, etc. Our hope is that this
# diversity makes our model robust to many forms of inputs and queries.
#
# First, we’ll take a look at some lines of our datafile to see the
# original format.
#
corpus_name = "movie-corpus"
corpus = os.path.join("data", corpus_name)
def printLines(file, n=10):
with open(file, 'rb') as datafile:
lines = datafile.readlines()
for line in lines[:n]:
print(line)
printLines(os.path.join(corpus, "utterances.jsonl"))
######################################################################
# Create formatted data file
# ~~~~~~~~~~~~~~~~~~~~~~~~~~
#
# For convenience, we'll create a nicely formatted data file in which each line
# contains a tab-separated *query sentence* and a *response sentence* pair.
#
# The following functions facilitate the parsing of the raw
# ``utterances.jsonl`` data file.
#
# - ``loadLinesAndConversations`` splits each line of the file into a dictionary of
# lines with fields: ``lineID``, ``characterID``, and text and then groups them
# into conversations with fields: ``conversationID``, ``movieID``, and lines.
# - ``extractSentencePairs`` extracts pairs of sentences from
# conversations
#
# Splits each line of the file to create lines and conversations
def loadLinesAndConversations(fileName):
lines = {}
conversations = {}
with open(fileName, 'r', encoding='iso-8859-1') as f:
for line in f:
lineJson = json.loads(line)
# Extract fields for line object
lineObj = {}
lineObj["lineID"] = lineJson["id"]
lineObj["characterID"] = lineJson["speaker"]
lineObj["text"] = lineJson["text"]
lines[lineObj['lineID']] = lineObj
# Extract fields for conversation object
if lineJson["conversation_id"] not in conversations:
convObj = {}
convObj["conversationID"] = lineJson["conversation_id"]
convObj["movieID"] = lineJson["meta"]["movie_id"]
convObj["lines"] = [lineObj]
else:
convObj = conversations[lineJson["conversation_id"]]
convObj["lines"].insert(0, lineObj)
conversations[convObj["conversationID"]] = convObj
return lines, conversations
# Extracts pairs of sentences from conversations
def extractSentencePairs(conversations):
qa_pairs = []
for conversation in conversations.values():
# Iterate over all the lines of the conversation
for i in range(len(conversation["lines"]) - 1): # We ignore the last line (no answer for it)
inputLine = conversation["lines"][i]["text"].strip()
targetLine = conversation["lines"][i+1]["text"].strip()
# Filter wrong samples (if one of the lists is empty)
if inputLine and targetLine:
qa_pairs.append([inputLine, targetLine])
return qa_pairs
######################################################################
# Now we’ll call these functions and create the file. We’ll call it
# ``formatted_movie_lines.txt``.
#
# Define path to new file
datafile = os.path.join(corpus, "formatted_movie_lines.txt")
delimiter = '\t'
# Unescape the delimiter
delimiter = str(codecs.decode(delimiter, "unicode_escape"))
# Initialize lines dict and conversations dict
lines = {}
conversations = {}
# Load lines and conversations
print("\nProcessing corpus into lines and conversations...")
lines, conversations = loadLinesAndConversations(os.path.join(corpus, "utterances.jsonl"))
# Write new csv file
print("\nWriting newly formatted file...")
with open(datafile, 'w', encoding='utf-8') as outputfile:
writer = csv.writer(outputfile, delimiter=delimiter, lineterminator='\n')
for pair in extractSentencePairs(conversations):
writer.writerow(pair)
# Print a sample of lines
print("\nSample lines from file:")
printLines(datafile)
######################################################################
# Load and trim data
# ~~~~~~~~~~~~~~~~~~
#
# Our next order of business is to create a vocabulary and load
# query/response sentence pairs into memory.
#
# Note that we are dealing with sequences of **words**, which do not have
# an implicit mapping to a discrete numerical space. Thus, we must create
# one by mapping each unique word that we encounter in our dataset to an
# index value.
#
# For this we define a ``Voc`` class, which keeps a mapping from words to
# indexes, a reverse mapping of indexes to words, a count of each word and
# a total word count. The class provides methods for adding a word to the
# vocabulary (``addWord``), adding all words in a sentence
# (``addSentence``) and trimming infrequently seen words (``trim``). More
# on trimming later.
#
# Default word tokens
PAD_token = 0 # Used for padding short sentences
SOS_token = 1 # Start-of-sentence token
EOS_token = 2 # End-of-sentence token
class Voc:
def __init__(self, name):
self.name = name
self.trimmed = False
self.word2index = {}
self.word2count = {}
self.index2word = {PAD_token: "PAD", SOS_token: "SOS", EOS_token: "EOS"}
self.num_words = 3 # Count SOS, EOS, PAD
def addSentence(self, sentence):
for word in sentence.split(' '):
self.addWord(word)
def addWord(self, word):
if word not in self.word2index:
self.word2index[word] = self.num_words
self.word2count[word] = 1
self.index2word[self.num_words] = word
self.num_words += 1
else:
self.word2count[word] += 1
# Remove words below a certain count threshold
def trim(self, min_count):
if self.trimmed:
return
self.trimmed = True
keep_words = []
for k, v in self.word2count.items():
if v >= min_count:
keep_words.append(k)
print('keep_words {} / {} = {:.4f}'.format(
len(keep_words), len(self.word2index), len(keep_words) / len(self.word2index)
))
# Reinitialize dictionaries
self.word2index = {}
self.word2count = {}
self.index2word = {PAD_token: "PAD", SOS_token: "SOS", EOS_token: "EOS"}
self.num_words = 3 # Count default tokens
for word in keep_words:
self.addWord(word)
######################################################################
# Now we can assemble our vocabulary and query/response sentence pairs.
# Before we are ready to use this data, we must perform some
# preprocessing.
#
# First, we must convert the Unicode strings to ASCII using
# ``unicodeToAscii``. Next, we should convert all letters to lowercase and
# trim all non-letter characters except for basic punctuation
# (``normalizeString``). Finally, to aid in training convergence, we will
# filter out sentences with length greater than the ``MAX_LENGTH``
# threshold (``filterPairs``).
#
MAX_LENGTH = 10 # Maximum sentence length to consider
# Turn a Unicode string to plain ASCII, thanks to
# https://stackoverflow.com/a/518232/2809427
def unicodeToAscii(s):
return ''.join(
c for c in unicodedata.normalize('NFD', s)
if unicodedata.category(c) != 'Mn'
)
# Lowercase, trim, and remove non-letter characters
def normalizeString(s):
s = unicodeToAscii(s.lower().strip())
s = re.sub(r"([.!?])", r" \1", s)
s = re.sub(r"[^a-zA-Z.!?]+", r" ", s)
s = re.sub(r"\s+", r" ", s).strip()
return s
# Read query/response pairs and return a voc object
def readVocs(datafile, corpus_name):
print("Reading lines...")
# Read the file and split into lines
lines = open(datafile, encoding='utf-8').\
read().strip().split('\n')
# Split every line into pairs and normalize
pairs = [[normalizeString(s) for s in l.split('\t')] for l in lines]
voc = Voc(corpus_name)
return voc, pairs
# Returns True if both sentences in a pair 'p' are under the MAX_LENGTH threshold
def filterPair(p):
# Input sequences need to preserve the last word for EOS token
return len(p[0].split(' ')) < MAX_LENGTH and len(p[1].split(' ')) < MAX_LENGTH
# Filter pairs using the ``filterPair`` condition
def filterPairs(pairs):
return [pair for pair in pairs if filterPair(pair)]
# Using the functions defined above, return a populated voc object and pairs list
def loadPrepareData(corpus, corpus_name, datafile, save_dir):
print("Start preparing training data ...")
voc, pairs = readVocs(datafile, corpus_name)
print("Read {!s} sentence pairs".format(len(pairs)))
pairs = filterPairs(pairs)
print("Trimmed to {!s} sentence pairs".format(len(pairs)))
print("Counting words...")
for pair in pairs:
voc.addSentence(pair[0])
voc.addSentence(pair[1])
print("Counted words:", voc.num_words)
return voc, pairs
# Load/Assemble voc and pairs
save_dir = os.path.join("data", "save")
voc, pairs = loadPrepareData(corpus, corpus_name, datafile, save_dir)
# Print some pairs to validate
print("\npairs:")
for pair in pairs[:10]:
print(pair)
######################################################################
# Another tactic that is beneficial to achieving faster convergence during
# training is trimming rarely used words out of our vocabulary. Decreasing
# the feature space will also soften the difficulty of the function that
# the model must learn to approximate. We will do this as a two-step
# process:
#
# 1) Trim words used under ``MIN_COUNT`` threshold using the ``voc.trim``
# function.
#
# 2) Filter out pairs with trimmed words.
#
MIN_COUNT = 3 # Minimum word count threshold for trimming
def trimRareWords(voc, pairs, MIN_COUNT):
# Trim words used under the MIN_COUNT from the voc
voc.trim(MIN_COUNT)
# Filter out pairs with trimmed words
keep_pairs = []
for pair in pairs:
input_sentence = pair[0]
output_sentence = pair[1]
keep_input = True
keep_output = True
# Check input sentence
for word in input_sentence.split(' '):
if word not in voc.word2index:
keep_input = False
break
# Check output sentence
for word in output_sentence.split(' '):
if word not in voc.word2index:
keep_output = False
break
# Only keep pairs that do not contain trimmed word(s) in their input or output sentence
if keep_input and keep_output:
keep_pairs.append(pair)
print("Trimmed from {} pairs to {}, {:.4f} of total".format(len(pairs), len(keep_pairs), len(keep_pairs) / len(pairs)))
return keep_pairs
# Trim voc and pairs
pairs = trimRareWords(voc, pairs, MIN_COUNT)
######################################################################
# Prepare Data for Models
# -----------------------
#
# Although we have put a great deal of effort into preparing and massaging our
# data into a nice vocabulary object and list of sentence pairs, our models
# will ultimately expect numerical torch tensors as inputs. One way to
# prepare the processed data for the models can be found in the `seq2seq
# translation
# tutorial <https://pytorch.org/tutorials/intermediate/seq2seq_translation_tutorial.html>`__.
# In that tutorial, we use a batch size of 1, meaning that all we have to
# do is convert the words in our sentence pairs to their corresponding
# indexes from the vocabulary and feed this to the models.
#
# However, if you’re interested in speeding up training and/or would like
# to leverage GPU parallelization capabilities, you will need to train
# with mini-batches.
#
# Using mini-batches also means that we must be mindful of the variation
# of sentence length in our batches. To accommodate sentences of different
# sizes in the same batch, we will make our batched input tensor of shape
# *(max_length, batch_size)*, where sentences shorter than the
# *max_length* are zero padded after an *EOS_token*.
#
# If we simply convert our English sentences to tensors by converting
# words to their indexes(\ ``indexesFromSentence``) and zero-pad, our
# tensor would have shape *(batch_size, max_length)* and indexing the
# first dimension would return a full sequence across all time-steps.
# However, we need to be able to index our batch along time, and across
# all sequences in the batch. Therefore, we transpose our input batch
# shape to *(max_length, batch_size)*, so that indexing across the first
# dimension returns a time step across all sentences in the batch. We
# handle this transpose implicitly in the ``zeroPadding`` function.
#
# .. figure:: /_static/img/chatbot/seq2seq_batches.png
# :align: center
# :alt: batches
#
# The ``inputVar`` function handles the process of converting sentences to
# tensor, ultimately creating a correctly shaped zero-padded tensor. It
# also returns a tensor of ``lengths`` for each of the sequences in the
# batch which will be passed to our decoder later.
#
# The ``outputVar`` function performs a similar function to ``inputVar``,
# but instead of returning a ``lengths`` tensor, it returns a binary mask
# tensor and a maximum target sentence length. The binary mask tensor has
# the same shape as the output target tensor, but every element that is a
# *PAD_token* is 0 and all others are 1.
#
# ``batch2TrainData`` simply takes a bunch of pairs and returns the input
# and target tensors using the aforementioned functions.
#
def indexesFromSentence(voc, sentence):
return [voc.word2index[word] for word in sentence.split(' ')] + [EOS_token]
def zeroPadding(l, fillvalue=PAD_token):
return list(itertools.zip_longest(*l, fillvalue=fillvalue))
def binaryMatrix(l, value=PAD_token):
m = []
for i, seq in enumerate(l):
m.append([])
for token in seq:
if token == PAD_token:
m[i].append(0)
else:
m[i].append(1)
return m
# Returns padded input sequence tensor and lengths
def inputVar(l, voc):
indexes_batch = [indexesFromSentence(voc, sentence) for sentence in l]
lengths = torch.tensor([len(indexes) for indexes in indexes_batch])
padList = zeroPadding(indexes_batch)
padVar = torch.LongTensor(padList)
return padVar, lengths
# Returns padded target sequence tensor, padding mask, and max target length
def outputVar(l, voc):
indexes_batch = [indexesFromSentence(voc, sentence) for sentence in l]
max_target_len = max([len(indexes) for indexes in indexes_batch])
padList = zeroPadding(indexes_batch)
mask = binaryMatrix(padList)
mask = torch.BoolTensor(mask)
padVar = torch.LongTensor(padList)
return padVar, mask, max_target_len
# Returns all items for a given batch of pairs
def batch2TrainData(voc, pair_batch):
pair_batch.sort(key=lambda x: len(x[0].split(" ")), reverse=True)
input_batch, output_batch = [], []
for pair in pair_batch:
input_batch.append(pair[0])
output_batch.append(pair[1])
inp, lengths = inputVar(input_batch, voc)
output, mask, max_target_len = outputVar(output_batch, voc)
return inp, lengths, output, mask, max_target_len
# Example for validation
small_batch_size = 5
batches = batch2TrainData(voc, [random.choice(pairs) for _ in range(small_batch_size)])
input_variable, lengths, target_variable, mask, max_target_len = batches
print("input_variable:", input_variable)
print("lengths:", lengths)
print("target_variable:", target_variable)
print("mask:", mask)
print("max_target_len:", max_target_len)
######################################################################
# Define Models
# -------------
#
# Seq2Seq Model
# ~~~~~~~~~~~~~
#
# The brains of our chatbot is a sequence-to-sequence (seq2seq) model. The
# goal of a seq2seq model is to take a variable-length sequence as an
# input, and return a variable-length sequence as an output using a
# fixed-sized model.
#
# `Sutskever et al. <https://arxiv.org/abs/1409.3215>`__ discovered that
# by using two separate recurrent neural nets together, we can accomplish
# this task. One RNN acts as an **encoder**, which encodes a variable
# length input sequence to a fixed-length context vector. In theory, this
# context vector (the final hidden layer of the RNN) will contain semantic
# information about the query sentence that is input to the bot. The
# second RNN is a **decoder**, which takes an input word and the context
# vector, and returns a guess for the next word in the sequence and a
# hidden state to use in the next iteration.
#
# .. figure:: /_static/img/chatbot/seq2seq_ts.png
# :align: center
# :alt: model
#
# Image source:
# https://jeddy92.github.io/JEddy92.github.io/ts_seq2seq_intro/
#
######################################################################
# Encoder
# ~~~~~~~
#
# The encoder RNN iterates through the input sentence one token
# (e.g. word) at a time, at each time step outputting an “output” vector
# and a “hidden state” vector. The hidden state vector is then passed to
# the next time step, while the output vector is recorded. The encoder
# transforms the context it saw at each point in the sequence into a set
# of points in a high-dimensional space, which the decoder will use to
# generate a meaningful output for the given task.
#
# At the heart of our encoder is a multi-layered Gated Recurrent Unit,
# invented by `Cho et al. <https://arxiv.org/pdf/1406.1078v3.pdf>`__ in
# 2014. We will use a bidirectional variant of the GRU, meaning that there
# are essentially two independent RNNs: one that is fed the input sequence
# in normal sequential order, and one that is fed the input sequence in
# reverse order. The outputs of each network are summed at each time step.
# Using a bidirectional GRU will give us the advantage of encoding both
# past and future contexts.
#
# Bidirectional RNN:
#
# .. figure:: /_static/img/chatbot/RNN-bidirectional.png
# :width: 70%
# :align: center
# :alt: rnn_bidir
#
# Image source: https://colah.github.io/posts/2015-09-NN-Types-FP/
#
# Note that an ``embedding`` layer is used to encode our word indices in
# an arbitrarily sized feature space. For our models, this layer will map
# each word to a feature space of size *hidden_size*. When trained, these
# values should encode semantic similarity between similar meaning words.
#
# Finally, if passing a padded batch of sequences to an RNN module, we
# must pack and unpack padding around the RNN pass using
# ``nn.utils.rnn.pack_padded_sequence`` and
# ``nn.utils.rnn.pad_packed_sequence`` respectively.
#
# **Computation Graph:**
#
# 1) Convert word indexes to embeddings.
# 2) Pack padded batch of sequences for RNN module.
# 3) Forward pass through GRU.
# 4) Unpack padding.
# 5) Sum bidirectional GRU outputs.
# 6) Return output and final hidden state.
#
# **Inputs:**
#
# - ``input_seq``: batch of input sentences; shape=\ *(max_length,
# batch_size)*
# - ``input_lengths``: list of sentence lengths corresponding to each
# sentence in the batch; shape=\ *(batch_size)*
# - ``hidden``: hidden state; shape=\ *(n_layers x num_directions,
# batch_size, hidden_size)*
#
# **Outputs:**
#
# - ``outputs``: output features from the last hidden layer of the GRU
# (sum of bidirectional outputs); shape=\ *(max_length, batch_size,
# hidden_size)*
# - ``hidden``: updated hidden state from GRU; shape=\ *(n_layers x
# num_directions, batch_size, hidden_size)*
#
#
class EncoderRNN(nn.Module):
def __init__(self, hidden_size, embedding, n_layers=1, dropout=0):
super(EncoderRNN, self).__init__()
self.n_layers = n_layers
self.hidden_size = hidden_size
self.embedding = embedding
# Initialize GRU; the input_size and hidden_size parameters are both set to 'hidden_size'
# because our input size is a word embedding with number of features == hidden_size
self.gru = nn.GRU(hidden_size, hidden_size, n_layers,
dropout=(0 if n_layers == 1 else dropout), bidirectional=True)
def forward(self, input_seq, input_lengths, hidden=None):
# Convert word indexes to embeddings
embedded = self.embedding(input_seq)
# Pack padded batch of sequences for RNN module
packed = nn.utils.rnn.pack_padded_sequence(embedded, input_lengths)
# Forward pass through GRU
outputs, hidden = self.gru(packed, hidden)
# Unpack padding
outputs, _ = nn.utils.rnn.pad_packed_sequence(outputs)
# Sum bidirectional GRU outputs
outputs = outputs[:, :, :self.hidden_size] + outputs[:, : ,self.hidden_size:]
# Return output and final hidden state
return outputs, hidden
######################################################################
# Decoder
# ~~~~~~~
#
# The decoder RNN generates the response sentence in a token-by-token
# fashion. It uses the encoder’s context vectors, and internal hidden
# states to generate the next word in the sequence. It continues
# generating words until it outputs an *EOS_token*, representing the end
# of the sentence. A common problem with a vanilla seq2seq decoder is that
# if we rely solely on the context vector to encode the entire input
# sequence’s meaning, it is likely that we will have information loss.
# This is especially the case when dealing with long input sequences,
# greatly limiting the capability of our decoder.
#
# To combat this, `Bahdanau et al. <https://arxiv.org/abs/1409.0473>`__
# created an “attention mechanism” that allows the decoder to pay
# attention to certain parts of the input sequence, rather than using the
# entire fixed context at every step.
#
# At a high level, attention is calculated using the decoder’s current
# hidden state and the encoder’s outputs. The output attention weights
# have the same shape as the input sequence, allowing us to multiply them
# by the encoder outputs, giving us a weighted sum which indicates the
# parts of encoder output to pay attention to. `Sean
# Robertson’s <https://github.com/spro>`__ figure describes this very
# well:
#
# .. figure:: /_static/img/chatbot/attn2.png
# :align: center
# :alt: attn2
#
# `Luong et al. <https://arxiv.org/abs/1508.04025>`__ improved upon
# Bahdanau et al.’s groundwork by creating “Global attention”. The key
# difference is that with “Global attention”, we consider all of the
# encoder’s hidden states, as opposed to Bahdanau et al.’s “Local
# attention”, which only considers the encoder’s hidden state from the
# current time step. Another difference is that with “Global attention”,
# we calculate attention weights, or energies, using the hidden state of
# the decoder from the current time step only. Bahdanau et al.’s attention
# calculation requires knowledge of the decoder’s state from the previous
# time step. Also, Luong et al. provides various methods to calculate the
# attention energies between the encoder output and decoder output which
# are called “score functions”:
#
# .. figure:: /_static/img/chatbot/scores.png
# :width: 60%
# :align: center
# :alt: scores
#
# where :math:`h_t` = current target decoder state and :math:`\bar{h}_s` =
# all encoder states.
#
# Overall, the Global attention mechanism can be summarized by the
# following figure. Note that we will implement the “Attention Layer” as a
# separate ``nn.Module`` called ``Attn``. The output of this module is a
# softmax normalized weights tensor of shape *(batch_size, 1,
# max_length)*.
#
# .. figure:: /_static/img/chatbot/global_attn.png
# :align: center
# :width: 60%
# :alt: global_attn
#
# Luong attention layer
class Attn(nn.Module):
def __init__(self, method, hidden_size):
super(Attn, self).__init__()
self.method = method
if self.method not in ['dot', 'general', 'concat']:
raise ValueError(self.method, "is not an appropriate attention method.")
self.hidden_size = hidden_size
if self.method == 'general':
self.attn = nn.Linear(self.hidden_size, hidden_size)
elif self.method == 'concat':
self.attn = nn.Linear(self.hidden_size * 2, hidden_size)
self.v = nn.Parameter(torch.FloatTensor(hidden_size))
def dot_score(self, hidden, encoder_output):
return torch.sum(hidden * encoder_output, dim=2)
def general_score(self, hidden, encoder_output):
energy = self.attn(encoder_output)
return torch.sum(hidden * energy, dim=2)
def concat_score(self, hidden, encoder_output):
energy = self.attn(torch.cat((hidden.expand(encoder_output.size(0), -1, -1), encoder_output), 2)).tanh()
return torch.sum(self.v * energy, dim=2)
def forward(self, hidden, encoder_outputs):
# Calculate the attention weights (energies) based on the given method
if self.method == 'general':
attn_energies = self.general_score(hidden, encoder_outputs)
elif self.method == 'concat':
attn_energies = self.concat_score(hidden, encoder_outputs)
elif self.method == 'dot':
attn_energies = self.dot_score(hidden, encoder_outputs)
# Transpose max_length and batch_size dimensions
attn_energies = attn_energies.t()
# Return the softmax normalized probability scores (with added dimension)
return F.softmax(attn_energies, dim=1).unsqueeze(1)
######################################################################
# Now that we have defined our attention submodule, we can implement the
# actual decoder model. For the decoder, we will manually feed our batch
# one time step at a time. This means that our embedded word tensor and
# GRU output will both have shape *(1, batch_size, hidden_size)*.
#
# **Computation Graph:**
#
# 1) Get embedding of current input word.
# 2) Forward through unidirectional GRU.
# 3) Calculate attention weights from the current GRU output from (2).
# 4) Multiply attention weights to encoder outputs to get new "weighted sum" context vector.
# 5) Concatenate weighted context vector and GRU output using Luong eq. 5.
# 6) Predict next word using Luong eq. 6 (without softmax).
# 7) Return output and final hidden state.
#
# **Inputs:**
#
# - ``input_step``: one time step (one word) of input sequence batch;
# shape=\ *(1, batch_size)*
# - ``last_hidden``: final hidden layer of GRU; shape=\ *(n_layers x
# num_directions, batch_size, hidden_size)*
# - ``encoder_outputs``: encoder model’s output; shape=\ *(max_length,
# batch_size, hidden_size)*
#
# **Outputs:**
#
# - ``output``: softmax normalized tensor giving probabilities of each
# word being the correct next word in the decoded sequence;
# shape=\ *(batch_size, voc.num_words)*
# - ``hidden``: final hidden state of GRU; shape=\ *(n_layers x
# num_directions, batch_size, hidden_size)*
#
class LuongAttnDecoderRNN(nn.Module):
def __init__(self, attn_model, embedding, hidden_size, output_size, n_layers=1, dropout=0.1):
super(LuongAttnDecoderRNN, self).__init__()
# Keep for reference
self.attn_model = attn_model
self.hidden_size = hidden_size
self.output_size = output_size
self.n_layers = n_layers
self.dropout = dropout
# Define layers
self.embedding = embedding
self.embedding_dropout = nn.Dropout(dropout)
self.gru = nn.GRU(hidden_size, hidden_size, n_layers, dropout=(0 if n_layers == 1 else dropout))
self.concat = nn.Linear(hidden_size * 2, hidden_size)
self.out = nn.Linear(hidden_size, output_size)
self.attn = Attn(attn_model, hidden_size)
def forward(self, input_step, last_hidden, encoder_outputs):
# Note: we run this one step (word) at a time
# Get embedding of current input word
embedded = self.embedding(input_step)
embedded = self.embedding_dropout(embedded)
# Forward through unidirectional GRU
rnn_output, hidden = self.gru(embedded, last_hidden)
# Calculate attention weights from the current GRU output
attn_weights = self.attn(rnn_output, encoder_outputs)
# Multiply attention weights to encoder outputs to get new "weighted sum" context vector
context = attn_weights.bmm(encoder_outputs.transpose(0, 1))
# Concatenate weighted context vector and GRU output using Luong eq. 5
rnn_output = rnn_output.squeeze(0)
context = context.squeeze(1)
concat_input = torch.cat((rnn_output, context), 1)
concat_output = torch.tanh(self.concat(concat_input))
# Predict next word using Luong eq. 6
output = self.out(concat_output)
output = F.softmax(output, dim=1)
# Return output and final hidden state
return output, hidden
######################################################################
# Define Training Procedure
# -------------------------
#
# Masked loss
# ~~~~~~~~~~~
#
# Since we are dealing with batches of padded sequences, we cannot simply
# consider all elements of the tensor when calculating loss. We define
# ``maskNLLLoss`` to calculate our loss based on our decoder’s output
# tensor, the target tensor, and a binary mask tensor describing the
# padding of the target tensor. This loss function calculates the average
# negative log likelihood of the elements that correspond to a *1* in the
# mask tensor.
#
def maskNLLLoss(inp, target, mask):
nTotal = mask.sum()
crossEntropy = -torch.log(torch.gather(inp, 1, target.view(-1, 1)).squeeze(1))
loss = crossEntropy.masked_select(mask).mean()
loss = loss.to(device)
return loss, nTotal.item()
######################################################################
# Single training iteration
# ~~~~~~~~~~~~~~~~~~~~~~~~~
#
# The ``train`` function contains the algorithm for a single training
# iteration (a single batch of inputs).
#
# We will use a couple of clever tricks to aid in convergence:
#
# - The first trick is using **teacher forcing**. This means that at some
# probability, set by ``teacher_forcing_ratio``, we use the current
# target word as the decoder’s next input rather than using the
# decoder’s current guess. This technique acts as training wheels for
# the decoder, aiding in more efficient training. However, teacher
# forcing can lead to model instability during inference, as the
# decoder may not have a sufficient chance to truly craft its own
# output sequences during training. Thus, we must be mindful of how we
# are setting the ``teacher_forcing_ratio``, and not be fooled by fast
# convergence.
#
# - The second trick that we implement is **gradient clipping**. This is
# a commonly used technique for countering the “exploding gradient”
# problem. In essence, by clipping or thresholding gradients to a
# maximum value, we prevent the gradients from growing exponentially
# and either overflow (NaN), or overshoot steep cliffs in the cost
# function.
#
# .. figure:: /_static/img/chatbot/grad_clip.png
# :align: center
# :width: 60%
# :alt: grad_clip
#
# Image source: Goodfellow et al. *Deep Learning*. 2016. https://www.deeplearningbook.org/
#
# **Sequence of Operations:**
#
# 1) Forward pass entire input batch through encoder.
# 2) Initialize decoder inputs as SOS_token, and hidden state as the encoder's final hidden state.
# 3) Forward input batch sequence through decoder one time step at a time.
# 4) If teacher forcing: set next decoder input as the current target; else: set next decoder input as current decoder output.
# 5) Calculate and accumulate loss.
# 6) Perform backpropagation.
# 7) Clip gradients.
# 8) Update encoder and decoder model parameters.
#
#
# .. Note ::
#
# PyTorch’s RNN modules (``RNN``, ``LSTM``, ``GRU``) can be used like any
# other non-recurrent layers by simply passing them the entire input
# sequence (or batch of sequences). We use the ``GRU`` layer like this in
# the ``encoder``. The reality is that under the hood, there is an
# iterative process looping over each time step calculating hidden states.
# Alternatively, you can run these modules one time-step at a time. In
# this case, we manually loop over the sequences during the training
# process like we must do for the ``decoder`` model. As long as you
# maintain the correct conceptual model of these modules, implementing
# sequential models can be very straightforward.
#
#
def train(input_variable, lengths, target_variable, mask, max_target_len, encoder, decoder, embedding,
encoder_optimizer, decoder_optimizer, batch_size, clip, max_length=MAX_LENGTH):
# Zero gradients
encoder_optimizer.zero_grad()
decoder_optimizer.zero_grad()
# Set device options
input_variable = input_variable.to(device)
target_variable = target_variable.to(device)
mask = mask.to(device)
# Lengths for RNN packing should always be on the CPU
lengths = lengths.to("cpu")
# Initialize variables
loss = 0
print_losses = []
n_totals = 0
# Forward pass through encoder
encoder_outputs, encoder_hidden = encoder(input_variable, lengths)
# Create initial decoder input (start with SOS tokens for each sentence)
decoder_input = torch.LongTensor([[SOS_token for _ in range(batch_size)]])
decoder_input = decoder_input.to(device)
# Set initial decoder hidden state to the encoder's final hidden state
decoder_hidden = encoder_hidden[:decoder.n_layers]
# Determine if we are using teacher forcing this iteration
use_teacher_forcing = True if random.random() < teacher_forcing_ratio else False
# Forward batch of sequences through decoder one time step at a time
if use_teacher_forcing:
for t in range(max_target_len):
decoder_output, decoder_hidden = decoder(
decoder_input, decoder_hidden, encoder_outputs
)
# Teacher forcing: next input is current target
decoder_input = target_variable[t].view(1, -1)
# Calculate and accumulate loss
mask_loss, nTotal = maskNLLLoss(decoder_output, target_variable[t], mask[t])
loss += mask_loss
print_losses.append(mask_loss.item() * nTotal)
n_totals += nTotal
else:
for t in range(max_target_len):
decoder_output, decoder_hidden = decoder(
decoder_input, decoder_hidden, encoder_outputs
)
# No teacher forcing: next input is decoder's own current output
_, topi = decoder_output.topk(1)
decoder_input = torch.LongTensor([[topi[i][0] for i in range(batch_size)]])
decoder_input = decoder_input.to(device)
# Calculate and accumulate loss