-
Notifications
You must be signed in to change notification settings - Fork 4.1k
/
Copy pathdata_loading_tutorial.py
461 lines (382 loc) · 15.6 KB
/
data_loading_tutorial.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
# -*- coding: utf-8 -*-
"""
Writing Custom Datasets, DataLoaders and Transforms
===================================================
**Author**: `Sasank Chilamkurthy <https://chsasank.github.io>`_
A lot of effort in solving any machine learning problem goes into
preparing the data. PyTorch provides many tools to make data loading
easy and hopefully, to make your code more readable. In this tutorial,
we will see how to load and preprocess/augment data from a non trivial
dataset.
To run this tutorial, please make sure the following packages are
installed:
- ``scikit-image``: For image io and transforms
- ``pandas``: For easier csv parsing
"""
import os
import torch
import pandas as pd
from skimage import io, transform
import numpy as np
import matplotlib.pyplot as plt
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms, utils
# Ignore warnings
import warnings
warnings.filterwarnings("ignore")
plt.ion() # interactive mode
######################################################################
# The dataset we are going to deal with is that of facial pose.
# This means that a face is annotated like this:
#
# .. figure:: /_static/img/landmarked_face2.png
# :width: 400
#
# Over all, 68 different landmark points are annotated for each face.
#
# .. note::
# Download the dataset from `here <https://download.pytorch.org/tutorial/faces.zip>`_
# so that the images are in a directory named 'data/faces/'.
# This dataset was actually
# generated by applying excellent `dlib's pose
# estimation <https://blog.dlib.net/2014/08/real-time-face-pose-estimation.html>`__
# on a few images from imagenet tagged as 'face'.
#
# Dataset comes with a ``.csv`` file with annotations which looks like this:
#
# .. code-block:: sh
#
# image_name,part_0_x,part_0_y,part_1_x,part_1_y,part_2_x, ... ,part_67_x,part_67_y
# 0805personali01.jpg,27,83,27,98, ... 84,134
# 1084239450_e76e00b7e7.jpg,70,236,71,257, ... ,128,312
#
# Let's take a single image name and its annotations from the CSV, in this case row index number 65
# for person-7.jpg just as an example. Read it, store the image name in ``img_name`` and store its
# annotations in an (L, 2) array ``landmarks`` where L is the number of landmarks in that row.
#
landmarks_frame = pd.read_csv('data/faces/face_landmarks.csv')
n = 65
img_name = landmarks_frame.iloc[n, 0]
landmarks = landmarks_frame.iloc[n, 1:]
landmarks = np.asarray(landmarks, dtype=float).reshape(-1, 2)
print('Image name: {}'.format(img_name))
print('Landmarks shape: {}'.format(landmarks.shape))
print('First 4 Landmarks: {}'.format(landmarks[:4]))
######################################################################
# Let's write a simple helper function to show an image and its landmarks
# and use it to show a sample.
#
def show_landmarks(image, landmarks):
"""Show image with landmarks"""
plt.imshow(image)
plt.scatter(landmarks[:, 0], landmarks[:, 1], s=10, marker='.', c='r')
plt.pause(0.001) # pause a bit so that plots are updated
plt.figure()
show_landmarks(io.imread(os.path.join('data/faces/', img_name)),
landmarks)
plt.show()
######################################################################
# Dataset class
# -------------
#
# ``torch.utils.data.Dataset`` is an abstract class representing a
# dataset.
# Your custom dataset should inherit ``Dataset`` and override the following
# methods:
#
# - ``__len__`` so that ``len(dataset)`` returns the size of the dataset.
# - ``__getitem__`` to support the indexing such that ``dataset[i]`` can
# be used to get :math:`i`\ th sample.
#
# Let's create a dataset class for our face landmarks dataset. We will
# read the csv in ``__init__`` but leave the reading of images to
# ``__getitem__``. This is memory efficient because all the images are not
# stored in the memory at once but read as required.
#
# Sample of our dataset will be a dict
# ``{'image': image, 'landmarks': landmarks}``. Our dataset will take an
# optional argument ``transform`` so that any required processing can be
# applied on the sample. We will see the usefulness of ``transform`` in the
# next section.
#
class FaceLandmarksDataset(Dataset):
"""Face Landmarks dataset."""
def __init__(self, csv_file, root_dir, transform=None):
"""
Arguments:
csv_file (string): Path to the csv file with annotations.
root_dir (string): Directory with all the images.
transform (callable, optional): Optional transform to be applied
on a sample.
"""
self.landmarks_frame = pd.read_csv(csv_file)
self.root_dir = root_dir
self.transform = transform
def __len__(self):
return len(self.landmarks_frame)
def __getitem__(self, idx):
if torch.is_tensor(idx):
idx = idx.tolist()
img_name = os.path.join(self.root_dir,
self.landmarks_frame.iloc[idx, 0])
image = io.imread(img_name)
landmarks = self.landmarks_frame.iloc[idx, 1:]
landmarks = np.array([landmarks], dtype=float).reshape(-1, 2)
sample = {'image': image, 'landmarks': landmarks}
if self.transform:
sample = self.transform(sample)
return sample
######################################################################
# Let's instantiate this class and iterate through the data samples. We
# will print the sizes of first 4 samples and show their landmarks.
#
face_dataset = FaceLandmarksDataset(csv_file='data/faces/face_landmarks.csv',
root_dir='data/faces/')
fig = plt.figure()
for i, sample in enumerate(face_dataset):
print(i, sample['image'].shape, sample['landmarks'].shape)
ax = plt.subplot(1, 4, i + 1)
plt.tight_layout()
ax.set_title('Sample #{}'.format(i))
ax.axis('off')
show_landmarks(**sample)
if i == 3:
plt.show()
break
######################################################################
# Transforms
# ----------
#
# One issue we can see from the above is that the samples are not of the
# same size. Most neural networks expect the images of a fixed size.
# Therefore, we will need to write some preprocessing code.
# Let's create three transforms:
#
# - ``Rescale``: to scale the image
# - ``RandomCrop``: to crop from image randomly. This is data
# augmentation.
# - ``ToTensor``: to convert the numpy images to torch images (we need to
# swap axes).
#
# We will write them as callable classes instead of simple functions so
# that parameters of the transform need not be passed every time it's
# called. For this, we just need to implement ``__call__`` method and
# if required, ``__init__`` method. We can then use a transform like this:
#
# .. code-block:: python
#
# tsfm = Transform(params)
# transformed_sample = tsfm(sample)
#
# Observe below how these transforms had to be applied both on the image and
# landmarks.
#
class Rescale(object):
"""Rescale the image in a sample to a given size.
Args:
output_size (tuple or int): Desired output size. If tuple, output is
matched to output_size. If int, smaller of image edges is matched
to output_size keeping aspect ratio the same.
"""
def __init__(self, output_size):
assert isinstance(output_size, (int, tuple))
self.output_size = output_size
def __call__(self, sample):
image, landmarks = sample['image'], sample['landmarks']
h, w = image.shape[:2]
if isinstance(self.output_size, int):
if h > w:
new_h, new_w = self.output_size * h / w, self.output_size
else:
new_h, new_w = self.output_size, self.output_size * w / h
else:
new_h, new_w = self.output_size
new_h, new_w = int(new_h), int(new_w)
img = transform.resize(image, (new_h, new_w))
# h and w are swapped for landmarks because for images,
# x and y axes are axis 1 and 0 respectively
landmarks = landmarks * [new_w / w, new_h / h]
return {'image': img, 'landmarks': landmarks}
class RandomCrop(object):
"""Crop randomly the image in a sample.
Args:
output_size (tuple or int): Desired output size. If int, square crop
is made.
"""
def __init__(self, output_size):
assert isinstance(output_size, (int, tuple))
if isinstance(output_size, int):
self.output_size = (output_size, output_size)
else:
assert len(output_size) == 2
self.output_size = output_size
def __call__(self, sample):
image, landmarks = sample['image'], sample['landmarks']
h, w = image.shape[:2]
new_h, new_w = self.output_size
top = np.random.randint(0, h - new_h + 1)
left = np.random.randint(0, w - new_w + 1)
image = image[top: top + new_h,
left: left + new_w]
landmarks = landmarks - [left, top]
return {'image': image, 'landmarks': landmarks}
class ToTensor(object):
"""Convert ndarrays in sample to Tensors."""
def __call__(self, sample):
image, landmarks = sample['image'], sample['landmarks']
# swap color axis because
# numpy image: H x W x C
# torch image: C x H x W
image = image.transpose((2, 0, 1))
return {'image': torch.from_numpy(image),
'landmarks': torch.from_numpy(landmarks)}
######################################################################
# .. note::
# In the example above, `RandomCrop` uses an external library's random number generator
# (in this case, Numpy's `np.random.int`). This can result in unexpected behavior with `DataLoader`
# (see `here <https://pytorch.org/docs/stable/notes/faq.html#my-data-loader-workers-return-identical-random-numbers>`_).
# In practice, it is safer to stick to PyTorch's random number generator, e.g. by using `torch.randint` instead.
######################################################################
# Compose transforms
# ~~~~~~~~~~~~~~~~~~
#
# Now, we apply the transforms on a sample.
#
# Let's say we want to rescale the shorter side of the image to 256 and
# then randomly crop a square of size 224 from it. i.e, we want to compose
# ``Rescale`` and ``RandomCrop`` transforms.
# ``torchvision.transforms.Compose`` is a simple callable class which allows us
# to do this.
#
scale = Rescale(256)
crop = RandomCrop(128)
composed = transforms.Compose([Rescale(256),
RandomCrop(224)])
# Apply each of the above transforms on sample.
fig = plt.figure()
sample = face_dataset[65]
for i, tsfrm in enumerate([scale, crop, composed]):
transformed_sample = tsfrm(sample)
ax = plt.subplot(1, 3, i + 1)
plt.tight_layout()
ax.set_title(type(tsfrm).__name__)
show_landmarks(**transformed_sample)
plt.show()
######################################################################
# Iterating through the dataset
# -----------------------------
#
# Let's put this all together to create a dataset with composed
# transforms.
# To summarize, every time this dataset is sampled:
#
# - An image is read from the file on the fly
# - Transforms are applied on the read image
# - Since one of the transforms is random, data is augmented on
# sampling
#
# We can iterate over the created dataset with a ``for i in range``
# loop as before.
#
transformed_dataset = FaceLandmarksDataset(csv_file='data/faces/face_landmarks.csv',
root_dir='data/faces/',
transform=transforms.Compose([
Rescale(256),
RandomCrop(224),
ToTensor()
]))
for i, sample in enumerate(transformed_dataset):
print(i, sample['image'].size(), sample['landmarks'].size())
if i == 3:
break
######################################################################
# However, we are losing a lot of features by using a simple ``for`` loop to
# iterate over the data. In particular, we are missing out on:
#
# - Batching the data
# - Shuffling the data
# - Load the data in parallel using ``multiprocessing`` workers.
#
# ``torch.utils.data.DataLoader`` is an iterator which provides all these
# features. Parameters used below should be clear. One parameter of
# interest is ``collate_fn``. You can specify how exactly the samples need
# to be batched using ``collate_fn``. However, default collate should work
# fine for most use cases.
#
dataloader = DataLoader(transformed_dataset, batch_size=4,
shuffle=True, num_workers=0)
# Helper function to show a batch
def show_landmarks_batch(sample_batched):
"""Show image with landmarks for a batch of samples."""
images_batch, landmarks_batch = \
sample_batched['image'], sample_batched['landmarks']
batch_size = len(images_batch)
im_size = images_batch.size(2)
grid_border_size = 2
grid = utils.make_grid(images_batch)
plt.imshow(grid.numpy().transpose((1, 2, 0)))
for i in range(batch_size):
plt.scatter(landmarks_batch[i, :, 0].numpy() + i * im_size + (i + 1) * grid_border_size,
landmarks_batch[i, :, 1].numpy() + grid_border_size,
s=10, marker='.', c='r')
plt.title('Batch from dataloader')
# if you are using Windows, uncomment the next line and indent the for loop.
# you might need to go back and change ``num_workers`` to 0.
# if __name__ == '__main__':
for i_batch, sample_batched in enumerate(dataloader):
print(i_batch, sample_batched['image'].size(),
sample_batched['landmarks'].size())
# observe 4th batch and stop.
if i_batch == 3:
plt.figure()
show_landmarks_batch(sample_batched)
plt.axis('off')
plt.ioff()
plt.show()
break
######################################################################
# Afterword: torchvision
# ----------------------
#
# In this tutorial, we have seen how to write and use datasets, transforms
# and dataloader. ``torchvision`` package provides some common datasets and
# transforms. You might not even have to write custom classes. One of the
# more generic datasets available in torchvision is ``ImageFolder``.
# It assumes that images are organized in the following way:
#
# .. code-block:: sh
#
# root/ants/xxx.png
# root/ants/xxy.jpeg
# root/ants/xxz.png
# .
# .
# .
# root/bees/123.jpg
# root/bees/nsdf3.png
# root/bees/asd932_.png
#
# where 'ants', 'bees' etc. are class labels. Similarly generic transforms
# which operate on ``PIL.Image`` like ``RandomHorizontalFlip``, ``Scale``,
# are also available. You can use these to write a dataloader like this:
#
# .. code-block:: pytorch
#
# import torch
# from torchvision import transforms, datasets
#
# data_transform = transforms.Compose([
# transforms.RandomResizedCrop(224),
# transforms.RandomHorizontalFlip(),
# transforms.ToTensor(),
# transforms.Normalize(mean=[0.485, 0.456, 0.406],
# std=[0.229, 0.224, 0.225])
# ])
# hymenoptera_dataset = datasets.ImageFolder(root='hymenoptera_data/train',
# transform=data_transform)
# dataset_loader = torch.utils.data.DataLoader(hymenoptera_dataset,
# batch_size=4, shuffle=True,
# num_workers=4)
#
# For an example with training code, please see
# :doc:`transfer_learning_tutorial`.