-
Notifications
You must be signed in to change notification settings - Fork 4.1k
/
Copy pathcaptumyt.py
499 lines (401 loc) · 20.1 KB
/
captumyt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
"""
`Introduction <introyt1_tutorial.html>`_ ||
`Tensors <tensors_deeper_tutorial.html>`_ ||
`Autograd <autogradyt_tutorial.html>`_ ||
`Building Models <modelsyt_tutorial.html>`_ ||
`TensorBoard Support <tensorboardyt_tutorial.html>`_ ||
`Training Models <trainingyt.html>`_ ||
**Model Understanding**
Model Understanding with Captum
===============================
Follow along with the video below or on `youtube <https://www.youtube.com/watch?v=Am2EF9CLu-g>`__. Download the notebook and corresponding files
`here <https://pytorch-tutorial-assets.s3.amazonaws.com/youtube-series/video7.zip>`__.
.. raw:: html
<div style="margin-top:10px; margin-bottom:10px;">
<iframe width="560" height="315" src="https://www.youtube.com/embed/Am2EF9CLu-g" frameborder="0" allow="accelerometer; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe>
</div>
`Captum <https://captum.ai/>`__ (“comprehension” in Latin) is an open
source, extensible library for model interpretability built on PyTorch.
With the increase in model complexity and the resulting lack of
transparency, model interpretability methods have become increasingly
important. Model understanding is both an active area of research as
well as an area of focus for practical applications across industries
using machine learning. Captum provides state-of-the-art algorithms,
including Integrated Gradients, to provide researchers and developers
with an easy way to understand which features are contributing to a
model’s output.
Full documentation, an API reference, and a suite of tutorials on
specific topics are available at the `captum.ai <https://captum.ai/>`__
website.
Introduction
------------
Captum’s approach to model interpretability is in terms of
*attributions.* There are three kinds of attributions available in
Captum:
- **Feature Attribution** seeks to explain a particular output in terms
of features of the input that generated it. Explaining whether a
movie review was positive or negative in terms of certain words in
the review is an example of feature attribution.
- **Layer Attribution** examines the activity of a model’s hidden layer
subsequent to a particular input. Examining the spatially-mapped
output of a convolutional layer in response to an input image in an
example of layer attribution.
- **Neuron Attribution** is analagous to layer attribution, but focuses
on the activity of a single neuron.
In this interactive notebook, we’ll look at Feature Attribution and
Layer Attribution.
Each of the three attribution types has multiple **attribution
algorithms** associated with it. Many attribution algorithms fall into
two broad categories:
- **Gradient-based algorithms** calculate the backward gradients of a
model output, layer output, or neuron activation with respect to the
input. **Integrated Gradients** (for features), **Layer Gradient \*
Activation**, and **Neuron Conductance** are all gradient-based
algorithms.
- **Perturbation-based algorithms** examine the changes in the output
of a model, layer, or neuron in response to changes in the input. The
input perturbations may be directed or random. **Occlusion,**
**Feature Ablation,** and **Feature Permutation** are all
perturbation-based algorithms.
We’ll be examining algorithms of both types below.
Especially where large models are involved, it can be valuable to
visualize attribution data in ways that relate it easily to the input
features being examined. While it is certainly possible to create your
own visualizations with Matplotlib, Plotly, or similar tools, Captum
offers enhanced tools specific to its attributions:
- The ``captum.attr.visualization`` module (imported below as ``viz``)
provides helpful functions for visualizing attributions related to
images.
- **Captum Insights** is an easy-to-use API on top of Captum that
provides a visualization widget with ready-made visualizations for
image, text, and arbitrary model types.
Both of these visualization toolsets will be demonstrated in this
notebook. The first few examples will focus on computer vision use
cases, but the Captum Insights section at the end will demonstrate
visualization of attributions in a multi-model, visual
question-and-answer model.
Installation
------------
Before you get started, you need to have a Python environment with:
- Python version 3.6 or higher
- For the Captum Insights example, Flask 1.1 or higher and Flask-Compress
(the latest version is recommended)
- PyTorch version 1.2 or higher (the latest version is recommended)
- TorchVision version 0.6 or higher (the latest version is recommended)
- Captum (the latest version is recommended)
- Matplotlib version 3.3.4, since Captum currently uses a Matplotlib
function whose arguments have been renamed in later versions
To install Captum in an Anaconda or pip virtual environment, use the
appropriate command for your environment below:
With ``conda``:
.. code-block:: sh
conda install pytorch torchvision captum flask-compress matplotlib=3.3.4 -c pytorch
With ``pip``:
.. code-block:: sh
pip install torch torchvision captum matplotlib==3.3.4 Flask-Compress
Restart this notebook in the environment you set up, and you’re ready to
go!
A First Example
---------------
To start, let’s take a simple, visual example. We’ll start with a ResNet
model pretrained on the ImageNet dataset. We’ll get a test input, and
use different **Feature Attribution** algorithms to examine how the
input images affect the output, and see a helpful visualization of this
input attribution map for some test images.
First, some imports:
"""
import torch
import torch.nn.functional as F
import torchvision.transforms as transforms
import torchvision.models as models
import captum
from captum.attr import IntegratedGradients, Occlusion, LayerGradCam, LayerAttribution
from captum.attr import visualization as viz
import os, sys
import json
import numpy as np
from PIL import Image
import matplotlib.pyplot as plt
from matplotlib.colors import LinearSegmentedColormap
#########################################################################
# Now we’ll use the TorchVision model library to download a pretrained
# ResNet. Since we’re not training, we’ll place it in evaluation mode for
# now.
#
model = models.resnet18(weights='IMAGENET1K_V1')
model = model.eval()
#######################################################################
# The place where you got this interactive notebook should also have an
# ``img`` folder with a file ``cat.jpg`` in it.
#
test_img = Image.open('img/cat.jpg')
test_img_data = np.asarray(test_img)
plt.imshow(test_img_data)
plt.show()
##########################################################################
# Our ResNet model was trained on the ImageNet dataset, and expects images
# to be of a certain size, with the channel data normalized to a specific
# range of values. We’ll also pull in the list of human-readable labels
# for the categories our model recognizes - that should be in the ``img``
# folder as well.
#
# model expects 224x224 3-color image
transform = transforms.Compose([
transforms.Resize(224),
transforms.CenterCrop(224),
transforms.ToTensor()
])
# standard ImageNet normalization
transform_normalize = transforms.Normalize(
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]
)
transformed_img = transform(test_img)
input_img = transform_normalize(transformed_img)
input_img = input_img.unsqueeze(0) # the model requires a dummy batch dimension
labels_path = 'img/imagenet_class_index.json'
with open(labels_path) as json_data:
idx_to_labels = json.load(json_data)
######################################################################
# Now, we can ask the question: What does our model think this image
# represents?
#
output = model(input_img)
output = F.softmax(output, dim=1)
prediction_score, pred_label_idx = torch.topk(output, 1)
pred_label_idx.squeeze_()
predicted_label = idx_to_labels[str(pred_label_idx.item())][1]
print('Predicted:', predicted_label, '(', prediction_score.squeeze().item(), ')')
######################################################################
# We’ve confirmed that ResNet thinks our image of a cat is, in fact, a
# cat. But *why* does the model think this is an image of a cat?
#
# For the answer to that, we turn to Captum.
#
##########################################################################
# Feature Attribution with Integrated Gradients
# ---------------------------------------------
#
# **Feature attribution** attributes a particular output to features of
# the input. It uses a specific input - here, our test image - to generate
# a map of the relative importance of each input feature to a particular
# output feature.
#
# `Integrated
# Gradients <https://captum.ai/api/integrated_gradients.html>`__ is one of
# the feature attribution algorithms available in Captum. Integrated
# Gradients assigns an importance score to each input feature by
# approximating the integral of the gradients of the model’s output with
# respect to the inputs.
#
# In our case, we’re going to be taking a specific element of the output
# vector - that is, the one indicating the model’s confidence in its
# chosen category - and use Integrated Gradients to understand what parts
# of the input image contributed to this output.
#
# Once we have the importance map from Integrated Gradients, we’ll use the
# visualization tools in Captum to give a helpful representation of the
# importance map. Captum’s ``visualize_image_attr()`` function provides a
# variety of options for customizing display of your attribution data.
# Here, we pass in a custom Matplotlib color map.
#
# Running the cell with the ``integrated_gradients.attribute()`` call will
# usually take a minute or two.
#
# Initialize the attribution algorithm with the model
integrated_gradients = IntegratedGradients(model)
# Ask the algorithm to attribute our output target to
attributions_ig = integrated_gradients.attribute(input_img, target=pred_label_idx, n_steps=200)
# Show the original image for comparison
_ = viz.visualize_image_attr(None, np.transpose(transformed_img.squeeze().cpu().detach().numpy(), (1,2,0)),
method="original_image", title="Original Image")
default_cmap = LinearSegmentedColormap.from_list('custom blue',
[(0, '#ffffff'),
(0.25, '#0000ff'),
(1, '#0000ff')], N=256)
_ = viz.visualize_image_attr(np.transpose(attributions_ig.squeeze().cpu().detach().numpy(), (1,2,0)),
np.transpose(transformed_img.squeeze().cpu().detach().numpy(), (1,2,0)),
method='heat_map',
cmap=default_cmap,
show_colorbar=True,
sign='positive',
title='Integrated Gradients')
#######################################################################
# In the image above, you should see that Integrated Gradients gives us
# the strongest signal around the cat’s location in the image.
#
##########################################################################
# Feature Attribution with Occlusion
# ----------------------------------
#
# Gradient-based attribution methods help to understand the model in terms
# of directly computing out the output changes with respect to the input.
# *Perturbation-based attribution* methods approach this more directly, by
# introducing changes to the input to measure the effect on the output.
# `Occlusion <https://captum.ai/api/occlusion.html>`__ is one such method.
# It involves replacing sections of the input image, and examining the
# effect on the output signal.
#
# Below, we set up Occlusion attribution. Similarly to configuring a
# convolutional neural network, you can specify the size of the target
# region, and a stride length to determine the spacing of individual
# measurements. We’ll visualize the output of our Occlusion attribution
# with ``visualize_image_attr_multiple()``, showing heat maps of both
# positive and negative attribution by region, and by masking the original
# image with the positive attribution regions. The masking gives a very
# instructive view of what regions of our cat photo the model found to be
# most “cat-like”.
#
occlusion = Occlusion(model)
attributions_occ = occlusion.attribute(input_img,
target=pred_label_idx,
strides=(3, 8, 8),
sliding_window_shapes=(3,15, 15),
baselines=0)
_ = viz.visualize_image_attr_multiple(np.transpose(attributions_occ.squeeze().cpu().detach().numpy(), (1,2,0)),
np.transpose(transformed_img.squeeze().cpu().detach().numpy(), (1,2,0)),
["original_image", "heat_map", "heat_map", "masked_image"],
["all", "positive", "negative", "positive"],
show_colorbar=True,
titles=["Original", "Positive Attribution", "Negative Attribution", "Masked"],
fig_size=(18, 6)
)
######################################################################
# Again, we see greater significance placed on the region of the image
# that contains the cat.
#
#########################################################################
# Layer Attribution with Layer GradCAM
# ------------------------------------
#
# **Layer Attribution** allows you to attribute the activity of hidden
# layers within your model to features of your input. Below, we’ll use a
# layer attribution algorithm to examine the activity of one of the
# convolutional layers within our model.
#
# GradCAM computes the gradients of the target output with respect to the
# given layer, averages for each output channel (dimension 2 of output),
# and multiplies the average gradient for each channel by the layer
# activations. The results are summed over all channels. GradCAM is
# designed for convnets; since the activity of convolutional layers often
# maps spatially to the input, GradCAM attributions are often upsampled
# and used to mask the input.
#
# Layer attribution is set up similarly to input attribution, except that
# in addition to the model, you must specify a hidden layer within the
# model that you wish to examine. As above, when we call ``attribute()``,
# we specify the target class of interest.
#
layer_gradcam = LayerGradCam(model, model.layer3[1].conv2)
attributions_lgc = layer_gradcam.attribute(input_img, target=pred_label_idx)
_ = viz.visualize_image_attr(attributions_lgc[0].cpu().permute(1,2,0).detach().numpy(),
sign="all",
title="Layer 3 Block 1 Conv 2")
##########################################################################
# We’ll use the convenience method ``interpolate()`` in the
# `LayerAttribution <https://captum.ai/api/base_classes.html?highlight=layerattribution#captum.attr.LayerAttribution>`__
# base class to upsample this attribution data for comparison to the input
# image.
#
upsamp_attr_lgc = LayerAttribution.interpolate(attributions_lgc, input_img.shape[2:])
print(attributions_lgc.shape)
print(upsamp_attr_lgc.shape)
print(input_img.shape)
_ = viz.visualize_image_attr_multiple(upsamp_attr_lgc[0].cpu().permute(1,2,0).detach().numpy(),
transformed_img.permute(1,2,0).numpy(),
["original_image","blended_heat_map","masked_image"],
["all","positive","positive"],
show_colorbar=True,
titles=["Original", "Positive Attribution", "Masked"],
fig_size=(18, 6))
#######################################################################
# Visualizations such as this can give you novel insights into how your
# hidden layers respond to your input.
#
##########################################################################
# Visualization with Captum Insights
# ----------------------------------
#
# Captum Insights is an interpretability visualization widget built on top
# of Captum to facilitate model understanding. Captum Insights works
# across images, text, and other features to help users understand feature
# attribution. It allows you to visualize attribution for multiple
# input/output pairs, and provides visualization tools for image, text,
# and arbitrary data.
#
# In this section of the notebook, we’ll visualize multiple image
# classification inferences with Captum Insights.
#
# First, let’s gather some image and see what the model thinks of them.
# For variety, we’ll take our cat, a teapot, and a trilobite fossil:
#
imgs = ['img/cat.jpg', 'img/teapot.jpg', 'img/trilobite.jpg']
for img in imgs:
img = Image.open(img)
transformed_img = transform(img)
input_img = transform_normalize(transformed_img)
input_img = input_img.unsqueeze(0) # the model requires a dummy batch dimension
output = model(input_img)
output = F.softmax(output, dim=1)
prediction_score, pred_label_idx = torch.topk(output, 1)
pred_label_idx.squeeze_()
predicted_label = idx_to_labels[str(pred_label_idx.item())][1]
print('Predicted:', predicted_label, '/', pred_label_idx.item(), ' (', prediction_score.squeeze().item(), ')')
##########################################################################
# …and it looks like our model is identifying them all correctly - but of
# course, we want to dig deeper. For that we’ll use the Captum Insights
# widget, which we configure with an ``AttributionVisualizer`` object,
# imported below. The ``AttributionVisualizer`` expects batches of data,
# so we’ll bring in Captum’s ``Batch`` helper class. And we’ll be looking
# at images specifically, so well also import ``ImageFeature``.
#
# We configure the ``AttributionVisualizer`` with the following arguments:
#
# - An array of models to be examined (in our case, just the one)
# - A scoring function, which allows Captum Insights to pull out the
# top-k predictions from a model
# - An ordered, human-readable list of classes our model is trained on
# - A list of features to look for - in our case, an ``ImageFeature``
# - A dataset, which is an iterable object returning batches of inputs
# and labels - just like you’d use for training
#
from captum.insights import AttributionVisualizer, Batch
from captum.insights.attr_vis.features import ImageFeature
# Baseline is all-zeros input - this may differ depending on your data
def baseline_func(input):
return input * 0
# merging our image transforms from above
def full_img_transform(input):
i = Image.open(input)
i = transform(i)
i = transform_normalize(i)
i = i.unsqueeze(0)
return i
input_imgs = torch.cat(list(map(lambda i: full_img_transform(i), imgs)), 0)
visualizer = AttributionVisualizer(
models=[model],
score_func=lambda o: torch.nn.functional.softmax(o, 1),
classes=list(map(lambda k: idx_to_labels[k][1], idx_to_labels.keys())),
features=[
ImageFeature(
"Photo",
baseline_transforms=[baseline_func],
input_transforms=[],
)
],
dataset=[Batch(input_imgs, labels=[282,849,69])]
)
#########################################################################
# Note that running the cell above didn’t take much time at all, unlike
# our attributions above. That’s because Captum Insights lets you
# configure different attribution algorithms in a visual widget, after
# which it will compute and display the attributions. *That* process will
# take a few minutes.
#
# Running the cell below will render the Captum Insights widget. You can
# then choose attributions methods and their arguments, filter model
# responses based on predicted class or prediction correctness, see the
# model’s predictions with associated probabilities, and view heatmaps of
# the attribution compared with the original image.
#
visualizer.render()