-
Notifications
You must be signed in to change notification settings - Fork 4.1k
/
Copy pathtrainingyt.py
368 lines (295 loc) · 12.9 KB
/
trainingyt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
"""
`Introduction <introyt1_tutorial.html>`_ ||
`Tensors <tensors_deeper_tutorial.html>`_ ||
`Autograd <autogradyt_tutorial.html>`_ ||
`Building Models <modelsyt_tutorial.html>`_ ||
`TensorBoard Support <tensorboardyt_tutorial.html>`_ ||
**Training Models** ||
`Model Understanding <captumyt.html>`_
Training with PyTorch
=====================
Follow along with the video below or on `youtube <https://www.youtube.com/watch?v=jF43_wj_DCQ>`__.
.. raw:: html
<div style="margin-top:10px; margin-bottom:10px;">
<iframe width="560" height="315" src="https://www.youtube.com/embed/jF43_wj_DCQ" frameborder="0" allow="accelerometer; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe>
</div>
Introduction
------------
In past videos, we’ve discussed and demonstrated:
- Building models with the neural network layers and functions of the torch.nn module
- The mechanics of automated gradient computation, which is central to
gradient-based model training
- Using TensorBoard to visualize training progress and other activities
In this video, we’ll be adding some new tools to your inventory:
- We’ll get familiar with the dataset and dataloader abstractions, and how
they ease the process of feeding data to your model during a training loop
- We’ll discuss specific loss functions and when to use them
- We’ll look at PyTorch optimizers, which implement algorithms to adjust
model weights based on the outcome of a loss function
Finally, we’ll pull all of these together and see a full PyTorch
training loop in action.
Dataset and DataLoader
----------------------
The ``Dataset`` and ``DataLoader`` classes encapsulate the process of
pulling your data from storage and exposing it to your training loop in
batches.
The ``Dataset`` is responsible for accessing and processing single
instances of data.
The ``DataLoader`` pulls instances of data from the ``Dataset`` (either
automatically or with a sampler that you define), collects them in
batches, and returns them for consumption by your training loop. The
``DataLoader`` works with all kinds of datasets, regardless of the type
of data they contain.
For this tutorial, we’ll be using the Fashion-MNIST dataset provided by
TorchVision. We use ``torchvision.transforms.Normalize()`` to
zero-center and normalize the distribution of the image tile content,
and download both training and validation data splits.
"""
import torch
import torchvision
import torchvision.transforms as transforms
# PyTorch TensorBoard support
from torch.utils.tensorboard import SummaryWriter
from datetime import datetime
transform = transforms.Compose(
[transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,))])
# Create datasets for training & validation, download if necessary
training_set = torchvision.datasets.FashionMNIST('./data', train=True, transform=transform, download=True)
validation_set = torchvision.datasets.FashionMNIST('./data', train=False, transform=transform, download=True)
# Create data loaders for our datasets; shuffle for training, not for validation
training_loader = torch.utils.data.DataLoader(training_set, batch_size=4, shuffle=True)
validation_loader = torch.utils.data.DataLoader(validation_set, batch_size=4, shuffle=False)
# Class labels
classes = ('T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat',
'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle Boot')
# Report split sizes
print('Training set has {} instances'.format(len(training_set)))
print('Validation set has {} instances'.format(len(validation_set)))
######################################################################
# As always, let’s visualize the data as a sanity check:
#
import matplotlib.pyplot as plt
import numpy as np
# Helper function for inline image display
def matplotlib_imshow(img, one_channel=False):
if one_channel:
img = img.mean(dim=0)
img = img / 2 + 0.5 # unnormalize
npimg = img.numpy()
if one_channel:
plt.imshow(npimg, cmap="Greys")
else:
plt.imshow(np.transpose(npimg, (1, 2, 0)))
dataiter = iter(training_loader)
images, labels = next(dataiter)
# Create a grid from the images and show them
img_grid = torchvision.utils.make_grid(images)
matplotlib_imshow(img_grid, one_channel=True)
print(' '.join(classes[labels[j]] for j in range(4)))
#########################################################################
# The Model
# ---------
#
# The model we’ll use in this example is a variant of LeNet-5 - it should
# be familiar if you’ve watched the previous videos in this series.
#
import torch.nn as nn
import torch.nn.functional as F
# PyTorch models inherit from torch.nn.Module
class GarmentClassifier(nn.Module):
def __init__(self):
super(GarmentClassifier, self).__init__()
self.conv1 = nn.Conv2d(1, 6, 5)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16 * 4 * 4, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = x.view(-1, 16 * 4 * 4)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
model = GarmentClassifier()
##########################################################################
# Loss Function
# -------------
#
# For this example, we’ll be using a cross-entropy loss. For demonstration
# purposes, we’ll create batches of dummy output and label values, run
# them through the loss function, and examine the result.
#
loss_fn = torch.nn.CrossEntropyLoss()
# NB: Loss functions expect data in batches, so we're creating batches of 4
# Represents the model's confidence in each of the 10 classes for a given input
dummy_outputs = torch.rand(4, 10)
# Represents the correct class among the 10 being tested
dummy_labels = torch.tensor([1, 5, 3, 7])
print(dummy_outputs)
print(dummy_labels)
loss = loss_fn(dummy_outputs, dummy_labels)
print('Total loss for this batch: {}'.format(loss.item()))
#################################################################################
# Optimizer
# ---------
#
# For this example, we’ll be using simple `stochastic gradient
# descent <https://pytorch.org/docs/stable/optim.html>`__ with momentum.
#
# It can be instructive to try some variations on this optimization
# scheme:
#
# - Learning rate determines the size of the steps the optimizer
# takes. What does a different learning rate do to the your training
# results, in terms of accuracy and convergence time?
# - Momentum nudges the optimizer in the direction of strongest gradient over
# multiple steps. What does changing this value do to your results?
# - Try some different optimization algorithms, such as averaged SGD, Adagrad, or
# Adam. How do your results differ?
#
# Optimizers specified in the torch.optim package
optimizer = torch.optim.SGD(model.parameters(), lr=0.001, momentum=0.9)
#######################################################################################
# The Training Loop
# -----------------
#
# Below, we have a function that performs one training epoch. It
# enumerates data from the DataLoader, and on each pass of the loop does
# the following:
#
# - Gets a batch of training data from the DataLoader
# - Zeros the optimizer’s gradients
# - Performs an inference - that is, gets predictions from the model for an input batch
# - Calculates the loss for that set of predictions vs. the labels on the dataset
# - Calculates the backward gradients over the learning weights
# - Tells the optimizer to perform one learning step - that is, adjust the model’s
# learning weights based on the observed gradients for this batch, according to the
# optimization algorithm we chose
# - It reports on the loss for every 1000 batches.
# - Finally, it reports the average per-batch loss for the last
# 1000 batches, for comparison with a validation run
#
def train_one_epoch(epoch_index, tb_writer):
running_loss = 0.
last_loss = 0.
# Here, we use enumerate(training_loader) instead of
# iter(training_loader) so that we can track the batch
# index and do some intra-epoch reporting
for i, data in enumerate(training_loader):
# Every data instance is an input + label pair
inputs, labels = data
# Zero your gradients for every batch!
optimizer.zero_grad()
# Make predictions for this batch
outputs = model(inputs)
# Compute the loss and its gradients
loss = loss_fn(outputs, labels)
loss.backward()
# Adjust learning weights
optimizer.step()
# Gather data and report
running_loss += loss.item()
if i % 1000 == 999:
last_loss = running_loss / 1000 # loss per batch
print(' batch {} loss: {}'.format(i + 1, last_loss))
tb_x = epoch_index * len(training_loader) + i + 1
tb_writer.add_scalar('Loss/train', last_loss, tb_x)
running_loss = 0.
return last_loss
##################################################################################
# Per-Epoch Activity
# ~~~~~~~~~~~~~~~~~~
#
# There are a couple of things we’ll want to do once per epoch:
#
# - Perform validation by checking our relative loss on a set of data that was not
# used for training, and report this
# - Save a copy of the model
#
# Here, we’ll do our reporting in TensorBoard. This will require going to
# the command line to start TensorBoard, and opening it in another browser
# tab.
#
# Initializing in a separate cell so we can easily add more epochs to the same run
timestamp = datetime.now().strftime('%Y%m%d_%H%M%S')
writer = SummaryWriter('runs/fashion_trainer_{}'.format(timestamp))
epoch_number = 0
EPOCHS = 5
best_vloss = 1_000_000.
for epoch in range(EPOCHS):
print('EPOCH {}:'.format(epoch_number + 1))
# Make sure gradient tracking is on, and do a pass over the data
model.train(True)
avg_loss = train_one_epoch(epoch_number, writer)
running_vloss = 0.0
# Set the model to evaluation mode, disabling dropout and using population
# statistics for batch normalization.
model.eval()
# Disable gradient computation and reduce memory consumption.
with torch.no_grad():
for i, vdata in enumerate(validation_loader):
vinputs, vlabels = vdata
voutputs = model(vinputs)
vloss = loss_fn(voutputs, vlabels)
running_vloss += vloss
avg_vloss = running_vloss / (i + 1)
print('LOSS train {} valid {}'.format(avg_loss, avg_vloss))
# Log the running loss averaged per batch
# for both training and validation
writer.add_scalars('Training vs. Validation Loss',
{ 'Training' : avg_loss, 'Validation' : avg_vloss },
epoch_number + 1)
writer.flush()
# Track best performance, and save the model's state
if avg_vloss < best_vloss:
best_vloss = avg_vloss
model_path = 'model_{}_{}'.format(timestamp, epoch_number)
torch.save(model.state_dict(), model_path)
epoch_number += 1
#########################################################################
# To load a saved version of the model:
#
# .. code:: python
#
# saved_model = GarmentClassifier()
# saved_model.load_state_dict(torch.load(PATH))
#
# Once you’ve loaded the model, it’s ready for whatever you need it for -
# more training, inference, or analysis.
#
# Note that if your model has constructor parameters that affect model
# structure, you’ll need to provide them and configure the model
# identically to the state in which it was saved.
#
# Other Resources
# ---------------
#
# - Docs on the `data
# utilities <https://pytorch.org/docs/stable/data.html>`__, including
# Dataset and DataLoader, at pytorch.org
# - A `note on the use of pinned
# memory <https://pytorch.org/docs/stable/notes/cuda.html#cuda-memory-pinning>`__
# for GPU training
# - Documentation on the datasets available in
# `TorchVision <https://pytorch.org/vision/stable/datasets.html>`__,
# `TorchText <https://pytorch.org/text/stable/datasets.html>`__, and
# `TorchAudio <https://pytorch.org/audio/stable/datasets.html>`__
# - Documentation on the `loss
# functions <https://pytorch.org/docs/stable/nn.html#loss-functions>`__
# available in PyTorch
# - Documentation on the `torch.optim
# package <https://pytorch.org/docs/stable/optim.html>`__, which
# includes optimizers and related tools, such as learning rate
# scheduling
# - A detailed `tutorial on saving and loading
# models <https://pytorch.org/tutorials/beginner/saving_loading_models.html>`__
# - The `Tutorials section of
# pytorch.org <https://pytorch.org/tutorials/>`__ contains tutorials on
# a broad variety of training tasks, including classification in
# different domains, generative adversarial networks, reinforcement
# learning, and more
#