-
Notifications
You must be signed in to change notification settings - Fork 4.1k
/
Copy pathinductor_debug_cpu.py
637 lines (576 loc) · 30.4 KB
/
inductor_debug_cpu.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
# -*- coding: utf-8 -*-
"""
Inductor CPU backend debugging and profiling
============================================
**Authors**: `Xuan Liao <https://github.com/Valentine233>`_, `Haozhe Zhu <https://github.com/zhuhaozhe>`_, `Jiong Gong <https://github.com/jgong5>`_, `Weihan Wang <https://github.com/EikanWang>`_
"""
#########################################################################
# Overview
# --------
#
# PyTorch 2.0 introduced the compilation API called ``torch.compile``.
# This new feature offers a significant speedup over eager mode execution through graph-level optimization powered by the default Inductor backend.
#
# This tutorial is intended to provide an in-depth introduction on the debugging
# and performance profiling on Inductor CPU backend by delving into the intricacies of ``torch.compile``.
#
# Meanwhile, you may also find related tutorials about ``torch.compile``
# around `basic usage <https://pytorch.org/tutorials/intermediate/torch_compile_tutorial.html>`_,
# comprehensive `troubleshooting <https://pytorch.org/docs/stable/torch.compiler_troubleshooting.html>`_
# and GPU-specific knowledge like `GPU performance profiling <https://pytorch.org/docs/stable/torch.compiler_inductor_profiling.html>`_.
#
# We will start debugging with a motivating example that triggers compilation issues and accuracy problems
# by demonstrating the process of debugging to pinpoint the problems.
#
# By enabling logging and exploring the underlying generated code,
# you can learn how to narrow down the failure step by step and finally figure out the route cause.
#
# Following that, we will proceed to discuss how to profile the compiled code and,
# through a performance comparison with eager mode,
# elaborate on the reasons why ``torch.compile`` can provide an additional performance boost compared to its eager counterpart.
######################################################################
# Debugging
# ---------
#
# Here is a simple example to run the ``torch.compile`` using Inductor and compare its result with eager mode:
import torch
def foo1(x1, x2):
a = torch.neg(x1)
b = torch.maximum(x2, a)
y = torch.cat([b], dim=0)
return y
x1 = torch.randint(256, (1, 8), dtype=torch.uint8)
x2 = torch.randint(256, (8390, 8), dtype=torch.uint8)
compiled_foo1 = torch.compile(foo1)
result = compiled_foo1(x1, x2)
######################################################################
# The correct implementation of ``neg`` in the ``cpp`` codegen is as follows:
def neg1(x):
return f"decltype({x})(-{x})"
######################################################################
# In order to demonstrate the debugging, we will modify the function to a wrong one later.
#
#
# Get more logging information
# ^^^^^^^^^^^^^^^^^^^^^^^^^^^^
#
# No debugging information would be provided if you run this simple example by default. In order to get more useful debugging and logging information, we usually add a ``TORCH_COMPILE_DEBUG`` environment variable like below:
#
# .. code-block:: shell
#
# TORCH_COMPILE_DEBUG=1 python xx.py
#
# This would print more debug information in the output logs and also dump the intermediate IRs generated during the codegen process. You can find the dumped file paths in the log like below:
#
# .. code-block:: shell
#
# torch._inductor.debug: [WARNING] model___20 debug trace: /tmp/torchinductor_root/rx/crxfi2ybd7yp5sbj2pnhw33wfhtdw7wumvrobyp5sjvdui5ktjc2.debug
#
# In this directory, the following files are saved for debugging purposes:
#
# +-----------------------------+----------------------------------------------------------------+
# | File | Description |
# +=============================+================================================================+
# | ``fx_graph_runnable.py`` | Executable FX graph, after decomposition, before pattern match |
# +-----------------------------+----------------------------------------------------------------+
# | ``fx_graph_transformed.py`` | Transformed FX graph, after pattern match |
# +-----------------------------+----------------------------------------------------------------+
# | ``ir_pre_fusion.txt`` | Inductor IR before fusion |
# +-----------------------------+----------------------------------------------------------------+
# | ``ir_post_fusion.txt`` | Inductor IR after fusion |
# +-----------------------------+----------------------------------------------------------------+
# | ``output_code.py`` | Generated Python code for graph, with C++/Triton kernels |
# +-----------------------------+----------------------------------------------------------------+
#
# Note that ``fx_graph_runnable.py`` and ``output_code.py`` are both runnable and editable in order to make debugging easier.
# Here are the main parts of code extracted from the files and we correlate the C++ generated line with the FX code line.
#
# ``fx_graph_runnable``:
#
def forward1(self, arg0_1, arg1_1):
neg = torch.ops.aten.neg.default(arg0_1); arg0_1 = None
maximum = torch.ops.aten.maximum.default(arg1_1, neg); arg1_1 = neg = None
clone = torch.ops.aten.clone.default(maximum); maximum = None
return (clone,)
######################################################################
# C++ kernel in ``output_code``:
#
import torch
from torch._inductor.async_compile import AsyncCompile
async_compile = AsyncCompile()
cpp_fused_cat_maximum_neg_0 = async_compile.cpp('''
#include "/tmp/torchinductor_root/gv/cgv6n5aotqjo5w4vknjibhengeycuattfto532hkxpozszcgxr3x.h"
extern "C" void kernel(const unsigned char* in_ptr0,
const unsigned char* in_ptr1,
unsigned char* out_ptr0)
{
{
#pragma GCC ivdep
for(long i0=static_cast<long>(0L); i0<static_cast<long>(8390L); i0+=static_cast<long>(1L))
{
#pragma GCC ivdep
for(long i1=static_cast<long>(0L); i1<static_cast<long>(8L); i1+=static_cast<long>(1L))
{
auto tmp0 = in_ptr0[static_cast<long>(i1 + (8L*i0))];
auto tmp1 = in_ptr1[static_cast<long>(i1)];
// Corresponding FX code line: neg = torch.ops.aten.neg.default(arg0_1); arg0_1 = None
auto tmp2 = decltype(tmp1)(-tmp1);
// Corresponding FX code line: maximum = torch.ops.aten.maximum.default(arg1_1, neg); arg1_1 = neg = None
auto tmp3 = max_propagate_nan(tmp0, tmp2);
// Corresponding FX code line: clone = torch.ops.aten.clone.default(maximum); maximum = None
out_ptr0[static_cast<long>(i1 + (8L*i0))] = tmp3;
}
}
}
}''')
######################################################################
# Determine component of error
# ^^^^^^^^^^^^^^^^^^^^^^^^^^^^
#
# When encountering errors or accuracy problems, a straightforward solution to find the bug is to narrow down the problem. The first thing to do is to determine the component where the error occurs. Luckily, it can be simply achieved by changing the backend of ``torch.compile``.
#
# +--------------------------------------------+-----------------------------------------+
# | Code | Description |
# +============================================+=========================================+
# | ``torch.compile(fn, backend="eager")`` | Enable Dynamo |
# +--------------------------------------------+-----------------------------------------+
# | ``torch.compile(fn, backend="aot_eager")`` | Enable Dynamo + AOT Autograd |
# +--------------------------------------------+-----------------------------------------+
# | ``torch.compile(fn, backend="inductor")`` | Enable Dynamo + AOT Autograd + Inductor |
# +--------------------------------------------+-----------------------------------------+
#
# If the model can successfully run when the backend is set to ``eager`` or ``aot_eager`` while it fails with ``inductor``, we can narrow down the failure to Inductor.
#
#
# Compilation error
# ^^^^^^^^^^^^^^^^^
#
# As we know, the evolved chain of graph-level optimization is like:
#
# .. code-block:: sh
#
# torch.neg (Python) -> torch.ops.aten.neg.default (within FX graph) -> ops.neg (within IR node) -> tmp2 = -tmp1 (within C++ kernel)
#
# If you encounter a compilation error, there is something wrong when compiling C++ kernels in the output code.
# This type of error indicates that bugs are introduced when lowering IR nodes to output code.
# The root cause of compilation error is usually shown in the traceback log.
#
# For example, the ``neg`` function is modified like this:
def neg2(x):
return f"-{x}"
######################################################################
# The logging gives the following compile error with a rather clear reason.
#
# .. code-block::
#
# torch._dynamo.exc.BackendCompilerFailed: backend='inductor' raised:
# CppCompileError: C++ compile error
# /tmp/torchinductor_root/xg/cxga5tk3b4lkwoxyigrtocjp5s7vc5cg2ikuscf6bk6pjqip2bhx.cpp: In function ‘void kernel(const unsigned char*, const unsigned char*, unsigned char*)’:
# /tmp/torchinductor_root/xg/cxga5tk3b4lkwoxyigrtocjp5s7vc5cg2ikuscf6bk6pjqip2bhx.cpp:17:57: error: no matching function for call to ‘max_propagate_nan(unsigned char&, int&)’
# 17 | auto tmp3 = max_propagate_nan(tmp0, tmp2);
# | ^
# In file included from /tmp/torchinductor_root/xg/cxga5tk3b4lkwoxyigrtocjp5s7vc5cg2ikuscf6bk6pjqip2bhx.cpp:2:
# /tmp/torchinductor_root/gv/cgv6n5aotqjo5w4vknjibhengeycuattfto532hkxpozszcgxr3x.h:27:17: note: candidate: ‘template<class scalar_t> scalar_t max_propagate_nan(scalar_t, scalar_t)’
# 27 | inline scalar_t max_propagate_nan(scalar_t a, scalar_t b) {
# | ^~~~~~~~~~~~~~~~~
# /tmp/torchinductor_root/gv/cgv6n5aotqjo5w4vknjibhengeycuattfto532hkxpozszcgxr3x.h:27:17: note: template argument deduction/substitution failed:
# /tmp/torchinductor_root/xg/cxga5tk3b4lkwoxyigrtocjp5s7vc5cg2ikuscf6bk6pjqip2bhx.cpp:17:57: note: deduced conflicting types for parameter ‘scalar_t’ (‘unsigned char’ and ‘int’)
# 17 | auto tmp3 = max_propagate_nan(tmp0, tmp2);
# | ^
#
#
# Let us also see the corresponding C++ kernel in output code and IR node.
#
# C++ kernel:
#
# .. code:: c
#
# include "/tmp/torchinductor_root/gv/cgv6n5aotqjo5w4vknjibhengeycuattfto532hkxpozszcgxr3x.h"
# extern "C" void kernel(const unsigned char* in_ptr0,
# const unsigned char* in_ptr1,
# unsigned char* out_ptr0)
# {
# {
# #pragma GCC ivdep
# for(long i0=static_cast<long>(0L); i0<static_cast<long>(8390L); i0+=static_cast<long>(1L))
# {
# #pragma GCC ivdep
# for(long i1=static_cast<long>(0L); i1<static_cast<long>(8L); i1+=static_cast<long>(1L))
# {
# auto tmp0 = in_ptr0[static_cast<long>(i1 + (8L*i0))];
# auto tmp1 = in_ptr1[static_cast<long>(i1)];
# auto tmp2 = -tmp1;
# auto tmp3 = max_propagate_nan(tmp0, tmp2);
# out_ptr0[static_cast<long>(i1 + (8L*i0))] = tmp3;
# }
# }
# }
# }
#
######################################################################
# IR node:
#
# .. code-block:: sh
#
# buf0: SchedulerNode(ComputedBuffer)
# buf0.writes = [MemoryDep('buf0', c0, {c0: 67120})]
# buf0.unmet_dependencies = []
# buf0.met_dependencies =
# [ MemoryDep('arg0_1', c1, {c0: 8390, c1: 8}),
# MemoryDep('arg1_1', c0, {c0: 67120})]
# buf0.users = [NodeUser(node=OUTPUT, can_inplace=False)]
# buf0.group.device = cpu
# buf0.group.iteration = ((8390, 8), ())
# buf0.sizes = ([8390, 8], [])
# class buf0_loop_body:
# var_ranges = {z0: 8390, z1: 8}
# index0 = 8*z0 + z1
# index1 = z1
# def body(self, ops):
# get_index = self.get_index('index0')
# load = ops.load('arg1_1', get_index)
# get_index_1 = self.get_index('index1')
# load_1 = ops.load('arg0_1', get_index_1)
# neg = ops.neg(load_1)
# maximum = ops.maximum(load, neg)
# get_index_2 = self.get_index('index0')
# store = ops.store('buf0', get_index_2, maximum, None)
# return store
#
######################################################################
# According to the traceback logging, the compilation error is caused by the data type inconsistency of ``max_propagate_nan``'s inputs.
# By checking the C++ kernel, we know that ``tmp2`` is no longer ``long`` after doing ``-`` as ``tmp0`` is ``long``.
# We can easily match ``-`` and ``max_propagate_nan`` in C++ kernel with ``ops.neg`` and ``ops.maximum`` in IR node respectively.
#
# Now we successfully find that the root cause is the implementation of ``ops.neg`` in ``cpp`` codegen, which silently changes the data type when doing ``neg``.
#
#
# Accuracy debugging
# ^^^^^^^^^^^^^^^^^^^
#
# Otherwise, if the model runs with other errors or accuracy problem, you can use the PyTorch debugging tool called `Minifier <https://pytorch.org/functorch/stable/notebooks/minifier.html>`_.
#
# The core idea of ``Minifier`` is to keep removing the nodes and inputs of graph until finding the minimal graph with problem.
# It helps to automatically generate a minified problematic graph through 4 strategies: truncating suffix, delta debugging, eliminating dead code and removing unused inputs.
#
#
# We will now show the debugging process for the accuracy problem with the help of ``Minifer``.
# The accuracy problem refers to the case where the outputs of backends eager and inductor are different.
#
# For instance, we modify the example like this:
from torch._dynamo.utils import same
def foo2(x1, x2):
a = torch.neg(x1)
b = torch.maximum(x2, a)
y = torch.cat([b], dim=0)
return y
x1 = torch.randn((1, 8), dtype=torch.float32)
x2 = torch.randn((8390, 8), dtype=torch.float32)
expected_result = foo2(x1, x2)
compiled_foo2 = torch.compile(foo2)
actual_result = compiled_foo2(x1, x2)
assert same(expected_result, actual_result) == True
######################################################################
# And also modify the ``neg`` function:
def neg3(x):
return f"decltype({x})(2 * {x})"
######################################################################
# An accuracy problem would be raised as follows:
#
# .. code-block:: sh
#
# torch._dynamo.utils: [ERROR] Accuracy failed: allclose not within tol=0.0001
# Traceback (most recent call last):
# File "test_script.py", line 18, in <module>
# assert same(expected_result, actual_result) == True
# AssertionError
#
# To debug an accuracy problem with Minifier, two environment variables are needed:
#
# .. code-block:: sh
#
# TORCHDYNAMO_REPRO_AFTER="aot" TORCHDYNAMO_REPRO_LEVEL=4 python xx.py
#
# Which gives us logging information that demonstrates the steps of minifying:
#
# .. code-block:: sh
#
# Started off with 6 nodes
#
# Trying granularity 2
# Strategy: Truncate suffix (G: 2) (6 nodes, 2 inputs)
# SUCCESS: Went from 6 to 4 nodes
#
# Trying granularity 4
# Strategy: Remove unused inputs (G: 4) (4 nodes, 2 inputs)
# SUCCESS: Went from 4 to 3 nodes
#
# After running, we get the final minified graph with the target node ``neg``:
def forward2(self, arg0_1):
neg = torch.ops.aten.neg.default(arg0_1); arg0_1 = None
return (neg,)
######################################################################
# For more usage details about Minifier, please refer to `Troubleshooting <https://pytorch.org/docs/stable/torch.compiler_troubleshooting.html>`_.
######################################################################
# Performance profiling
# ---------------------
#
# Within this section, we will demonstrate the process of conducting performance analysis for a model that has been compiled using the Inductor CPU backend.
# In the example below, we benchmark a Hugging Face Transformer model ``MobileBertForQuestionAnswering`` with both the eager mode and the Inductor graph mode.
# The execution time and the speedup ratio of Inductor are printed after the benchmark.
# We use Intel(R) Xeon(R) Platinum 8358 CPU @ 2.60GHz and run benchmark on the first socket to demonstrate the optimization within this section.
# We set following environment variable as a best practice to benchmark on Intel(R) CPU.
#########################################################
# .. code-block:: shell
#
# export KMP_BLOCKTIME=1
# export KMP_SETTINGS=1
# export KMP_AFFINITY=granularity=fine,compact,1,0
# export LD_PRELOAD=${CONDA_PREFIX:-"$(dirname $(which conda))/../"}/lib/libiomp5.so:${CONDA_PREFIX:-"$(dirname $(which conda))/../"}/lib/libjemalloc.so
# export MALLOC_CONF="oversize_threshold:1,background_thread:true,metadata_thp:auto,dirty_decay_ms:-1,muzzy_decay_ms:-1"
# numactl -C 0-31 -m 0 python bench.py
#
# bench.py
from transformers import MobileBertForQuestionAnswering
# Initialize an eager model
model = MobileBertForQuestionAnswering.from_pretrained("csarron/mobilebert-uncased-squad-v2")
seq_length = 128
bs = 128
vocab_size = model.config.vocab_size
input = torch.randint(0, vocab_size, (bs, seq_length), dtype=torch.int64)
input_dict = {"input_ids": input}
# Initialize the inductor model
compiled_model = torch.compile(model)
with torch.no_grad():
compiled_model(**input_dict)
NUM_ITERS=50
import timeit
with torch.no_grad():
# warmup
for _ in range(10):
model(**input_dict)
eager_t = timeit.timeit("model(**input_dict)", number=NUM_ITERS, globals=globals())
with torch.no_grad():
# warmup
for _ in range(10):
compiled_model(**input_dict)
inductor_t = timeit.timeit("compiled_model(**input_dict)", number=NUM_ITERS, globals=globals())
# print(f"eager use: {eager_t * 1000 / NUM_ITERS} ms/iter")
# print(f"inductor use: {inductor_t * 1000 / NUM_ITERS} ms/iter")
# print(f"speed up ratio: {eager_t / inductor_t}")
######################################################################
# Output:
#
# .. code-block:: shell
#
# eager use: 802.1023553796113 ms/iter
# inductor use: 339.95180135127157 ms/iter
# speed up ratio: 2.359459053287382
#
# In our own testing, we find the Inductor CPU backend speed up the model by around 2.355x.
#
#
# Next, let's dive deep into the performance at the operation level to understand where the speed-up comes from.
# `Pytorch Profiler <https://pytorch.org/tutorials/recipes/recipes/profiler_recipe.html>`_ is a good tool to help us.
# Inductor CPU backend has the support to report the time of the fusion kernels to the profiler with the ``enable_kernel_profile`` configuration option:
from torch._inductor import config
config.cpp.enable_kernel_profile = True
######################################################################
# Following the steps in `Pytorch Profiler <https://pytorch.org/tutorials/recipes/recipes/profiler_recipe.html>`_
# We are able to get the profiling table and trace files.
# bench.py
from torch.profiler import profile, schedule, ProfilerActivity
RESULT_DIR = "./prof_trace"
my_schedule = schedule(
skip_first=10,
wait=5,
warmup=5,
active=1,
repeat=5)
def trace_handler(p):
output = p.key_averages().table(sort_by="self_cpu_time_total", row_limit=20)
# print(output)
p.export_chrome_trace(f"{RESULT_DIR}/{p.step_num}.json")
for _ in range(10):
model(**input_dict) # compiled_model(**input_dict) to get inductor model profiling
total = 0
with profile(
activities=[ProfilerActivity.CPU],
schedule=my_schedule,
on_trace_ready=trace_handler
) as p:
for _ in range(50):
model(**input_dict) # compiled_model(**input_dict) to get inductor model profiling
p.step()
######################################################################
# We get the following performance profiling table for the eager-mode model (omitting some columns):
#
# .. code-block:: shell
#
# ------------------------- ------------ ------------ ------------
# Name CPU total % CPU total # of Calls
# ------------------------- ------------ ------------ ------------
# aten::addmm 45.73% 370.814ms 362
# aten::add 19.89% 161.276ms 363
# aten::copy_ 14.97% 121.416ms 488
# aten::mul 9.02% 73.154ms 194
# aten::clamp_min 8.81% 71.444ms 96
# aten::bmm 5.46% 44.258ms 48
# ProfilerStep* 100.00% 810.920ms 1
# aten::div 2.89% 23.447ms 24
# aten::_softmax 1.00% 8.087ms 24
# aten::linear 46.48% 376.888ms 362
# aten::clone 2.77% 22.430ms 98
# aten::t 0.31% 2.502ms 362
# aten::view 0.14% 1.161ms 850
# aten::transpose 0.17% 1.377ms 386
# aten::index_select 0.12% 952.000us 3
# aten::expand 0.12% 986.000us 458
# aten::matmul 8.31% 67.420ms 48
# aten::cat 0.09% 703.000us 1
# aten::as_strided 0.08% 656.000us 963
# aten::relu 8.86% 71.864ms 96
# ------------------------- ------------ ------------ ------------
# Self CPU time total: 810.920ms
#
######################################################################
#
# Similarly, we also get the table for the compiled model with Inductor (omitting some columns):
#
# .. code-block:: shell
#
# ----------------------------------------------- ------------ ------------ ------------
# Name CPU total % CPU total # of Calls
# ----------------------------------------------- ------------ ------------ ------------
# mkl::_mkl_linear 68.79% 231.573ms 362
# aten::bmm 8.02% 26.992ms 48
# ProfilerStep* 100.00% 336.642ms 1
# graph_0_cpp_fused_constant_pad_nd_embedding_0 0.27% 915.000us 1
# aten::empty 0.27% 911.000us 362
# graph_0_cpp_fused__mkl_linear_add_mul_relu_151 0.27% 901.000us 1
# graph_0_cpp_fused__mkl_linear_add_mul_relu_226 0.27% 899.000us 1
# graph_0_cpp_fused__mkl_linear_add_mul_relu_361 0.27% 898.000us 1
# graph_0_cpp_fused__mkl_linear_add_mul_relu_121 0.27% 895.000us 1
# graph_0_cpp_fused__mkl_linear_add_mul_relu_31 0.27% 893.000us 1
# graph_0_cpp_fused__mkl_linear_add_mul_relu_76 0.26% 892.000us 1
# graph_0_cpp_fused__mkl_linear_add_mul_relu_256 0.26% 892.000us 1
# graph_0_cpp_fused__mkl_linear_add_mul_relu_346 0.26% 892.000us 1
# graph_0_cpp_fused__mkl_linear_add_mul_relu_241 0.26% 891.000us 1
# graph_0_cpp_fused__mkl_linear_add_mul_relu_316 0.26% 891.000us 1
# graph_0_cpp_fused__mkl_linear_add_mul_relu_91 0.26% 890.000us 1
# graph_0_cpp_fused__mkl_linear_add_mul_relu_106 0.26% 890.000us 1
# graph_0_cpp_fused__mkl_linear_add_mul_relu_211 0.26% 890.000us 1
# graph_0_cpp_fused__mkl_linear_add_mul_relu_61 0.26% 889.000us 1
# graph_0_cpp_fused__mkl_linear_add_mul_relu_286 0.26% 889.000us 1
# ----------------------------------------------- ------------ ------------ ------------
# Self CPU time total: 336.642ms
#
# From the profiling table of the eager model, we can see the most time consumption ops are [``aten::addmm``, ``aten::add``, ``aten::copy_``, ``aten::mul``, ``aten::clamp_min``, ``aten::bmm``].
# Comparing with the inductor model profiling table, we notice an ``mkl::_mkl_linear`` entry and multiple fused kernels in the form ``graph_0_cpp_fused_*``. They are the major
# optimizations that the inductor model is doing. Let us discuss them separately.
#
# (1) Regarding ``mkl::_mkl_linear``: You may notice the number of calls to this kernel is 362, which is exactly the same as ``aten::linear`` in the eager model profiling table.
# The CPU total of ``aten::linear`` is 376.888ms, while it is 231.573ms for ``mkl::_mkl_linear``. This suggests a ~1.63x for the "linear" part.
# The speedup mainly comes from `packing the weight tensor to block memory format <https://www.intel.com/content/www/us/en/docs/onemkl/developer-reference-c/2023-1/cblas-gemm-pack-002.html>`_
# and invoking `cblas_sgemm_compute <https://www.intel.com/content/www/us/en/docs/onemkl/developer-reference-c/2023-1/cblas-gemm-compute-002.html>`_ within the Inductor CPU backend
# to have a better cache behavior during GEMM computation.
#
# (2) Regarding other memory-intensive ops: The end-to-end latency for the eager/inductor model is 802/339ms in our testing. So we can roughly infer that the speed up for the other memory-intensive ops is around 3.94x.
# Let's read the generated code to understand how the inductor achieves this impressive optimization. You can find the generated code by
# searching ``cpp_fused__mkl_linear_add_mul_relu_151`` in ``output_code.py``
#
cpp_fused__mkl_linear_add_mul_relu_151 = async_compile.cpp('''
#include <ATen/record_function.h>
#include "/tmp/torchinductor_root/lr/clrlgu27q4ggd472umdzwsu6qcpqxcuusjxqvx2hwitjbujiiz7z.h"
extern "C" void kernel(float* in_out_ptr0,
const float* in_ptr0,
const float* in_ptr1,
const float* in_ptr2,
const float* in_ptr3)
{
RECORD_FUNCTION("graph_0_cpp_fused__mkl_linear_add_mul_relu_151", c10::ArrayRef<c10::IValue>({}));
#pragma omp parallel num_threads(32)
{
{
#pragma omp for
for(long i0=static_cast<long>(0L); i0<static_cast<long>(16384L); i0+=static_cast<long>(1L))
{
for(long i1=static_cast<long>(0L); i1<static_cast<long>(512L); i1+=static_cast<long>(8L))
{
auto tmp0 = at::vec::Vectorized<float>::loadu(in_ptr0 + static_cast<long>(i1 + (512L*i0)));
auto tmp1 = at::vec::Vectorized<float>::loadu(in_ptr1 + static_cast<long>(i1));
auto tmp3 = at::vec::Vectorized<float>::loadu(in_out_ptr0 + static_cast<long>(i1 + (512L*i0)));
auto tmp5 = at::vec::Vectorized<float>::loadu(in_ptr2 + static_cast<long>(i1));
auto tmp7 = at::vec::Vectorized<float>::loadu(in_ptr3 + static_cast<long>(i1));
auto tmp2 = tmp0 + tmp1;
auto tmp4 = tmp2 + tmp3;
auto tmp6 = tmp4 * tmp5;
auto tmp8 = tmp6 + tmp7;
tmp8.store(in_out_ptr0 + static_cast<long>(i1 + (512L*i0)));
}
}
}
}
}''')
######################################################################
# From the generated code above, we can see this kernel has done a typical `Loop Fusion <https://en.wikipedia.org/wiki/Loop_fission_and_fusion>`_ on ``[add, add, mul, add]``.
# This is a memory-bound bottle neck preventing good performance. To get a more intuitive feeling about this optimization,
# we can infer the sizes and stride of the inputs and further benchmark this ``[add, add, mul, add]`` pattern.
# bench.py
def func(arg_0, arg_1, arg_2, arg_3, arg_4):
add_0 = arg_0 + arg_1
add_1 = add_0 + arg_2
mul_1 = add_1 * arg_3
add_2 = mul_1 + arg_4
arg_2 = add_2
return arg_2
arg_0 = torch.rand(16384, 512)
arg_1 = torch.rand(1, 512)
arg_2 = torch.zeros(16384, 512)
arg_3 = torch.rand(1, 512)
arg_4 = torch.rand(1, 512)
input = (arg_0, arg_1, arg_2, arg_3, arg_4)
inductor_func = torch.compile(func)
with torch.no_grad():
inductor_func(*input)
import timeit
NUM_ITERS=100
with torch.no_grad():
# warmup
for _ in range(10):
func(*input)
eager_t = timeit.timeit("func(*input)", number=NUM_ITERS, globals=globals())
with torch.no_grad():
# warmup
for _ in range(10):
inductor_func(*input)
inductor_t = timeit.timeit("inductor_func(*input)", number=NUM_ITERS, globals=globals())
# print(f"eager use: {eager_t * 1000 / NUM_ITERS} ms/iter")
# print(f"inductor use: {inductor_t * 1000 / NUM_ITERS} ms/iter")
# print(f"speed up ratio: {eager_t / inductor_t}")
######################################################################
# Output:
#
# .. code-block:: shell
#
# eager use: 5.780875144992024 ms/iter
# inductor use: 0.9588955780491233 ms/iter
# speed up ratio: 6.0286805751604735
#
#
# This is just an example. The profiling table shows all element-wise op are fused within the inductor automatically in this model. You can read more kernels in
# `output_code.py`
#########################################################################
# Conclusion
# ----------
#
# The document gives an in-depth tutorial for the Inductor CPU backend.
#
# With motivating examples, we walk through the process of debugging and profiling.
# The main idea is to narrow down the problem.
#
# We demonstrate step by step the way to delve deeper the issue and find the root cause of failures, with the help of debugging logging and the tool Minifier.
# Firstly determine which component the failure occurs in and then try to generate the smallest snippet of code that can reproduce the failure.
#
# When the performance with Inductor is better than that of eager mode, we provide a solid analytical method for performance profiling.
# We show how to find the time-consuming hotspot with PyTorch Profiler and figure out the operator-level or kernel-level reason to explain the phenomenon.