forked from mne-tools/mne-python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path_stockwell.py
268 lines (237 loc) · 9.75 KB
/
_stockwell.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
# Authors : Denis A. Engemann <[email protected]>
# Alexandre Gramfort <[email protected]>
#
# License : BSD 3-clause
from copy import deepcopy
import math
import numpy as np
from scipy import fftpack
# XXX explore cuda optimization at some point.
from ..io.pick import _pick_data_channels, pick_info
from ..utils import verbose, warn, fill_doc
from ..parallel import parallel_func, check_n_jobs
from .tfr import AverageTFR, _get_data
def _check_input_st(x_in, n_fft):
"""Aux function."""
# flatten to 2 D and memorize original shape
n_times = x_in.shape[-1]
def _is_power_of_two(n):
return not (n > 0 and ((n & (n - 1))))
if n_fft is None or (not _is_power_of_two(n_fft) and n_times > n_fft):
# Compute next power of 2
n_fft = 2 ** int(math.ceil(math.log(n_times, 2)))
elif n_fft < n_times:
raise ValueError("n_fft cannot be smaller than signal size. "
"Got %s < %s." % (n_fft, n_times))
if n_times < n_fft:
warn('The input signal is shorter ({}) than "n_fft" ({}). '
'Applying zero padding.'.format(x_in.shape[-1], n_fft))
zero_pad = n_fft - n_times
pad_array = np.zeros(x_in.shape[:-1] + (zero_pad,), x_in.dtype)
x_in = np.concatenate((x_in, pad_array), axis=-1)
else:
zero_pad = 0
return x_in, n_fft, zero_pad
def _precompute_st_windows(n_samp, start_f, stop_f, sfreq, width):
"""Precompute stockwell Gaussian windows (in the freq domain)."""
tw = fftpack.fftfreq(n_samp, 1. / sfreq) / n_samp
tw = np.r_[tw[:1], tw[1:][::-1]]
k = width # 1 for classical stowckwell transform
f_range = np.arange(start_f, stop_f, 1)
windows = np.empty((len(f_range), len(tw)), dtype=np.complex128)
for i_f, f in enumerate(f_range):
if f == 0.:
window = np.ones(len(tw))
else:
window = ((f / (np.sqrt(2. * np.pi) * k)) *
np.exp(-0.5 * (1. / k ** 2.) * (f ** 2.) * tw ** 2.))
window /= window.sum() # normalisation
windows[i_f] = fftpack.fft(window)
return windows
def _st(x, start_f, windows):
"""Compute ST based on Ali Moukadem MATLAB code (used in tests)."""
n_samp = x.shape[-1]
ST = np.empty(x.shape[:-1] + (len(windows), n_samp), dtype=np.complex128)
# do the work
Fx = fftpack.fft(x)
XF = np.concatenate([Fx, Fx], axis=-1)
for i_f, window in enumerate(windows):
f = start_f + i_f
ST[..., i_f, :] = fftpack.ifft(XF[..., f:f + n_samp] * window)
return ST
def _st_power_itc(x, start_f, compute_itc, zero_pad, decim, W):
"""Aux function."""
n_samp = x.shape[-1]
n_out = (n_samp - zero_pad)
n_out = n_out // decim + bool(n_out % decim)
psd = np.empty((len(W), n_out))
itc = np.empty_like(psd) if compute_itc else None
X = fftpack.fft(x)
XX = np.concatenate([X, X], axis=-1)
for i_f, window in enumerate(W):
f = start_f + i_f
ST = fftpack.ifft(XX[:, f:f + n_samp] * window)
if zero_pad > 0:
TFR = ST[:, :-zero_pad:decim]
else:
TFR = ST[:, ::decim]
TFR_abs = np.abs(TFR)
TFR_abs[TFR_abs == 0] = 1.
if compute_itc:
TFR /= TFR_abs
itc[i_f] = np.abs(np.mean(TFR, axis=0))
TFR_abs *= TFR_abs
psd[i_f] = np.mean(TFR_abs, axis=0)
return psd, itc
@fill_doc
def tfr_array_stockwell(data, sfreq, fmin=None, fmax=None, n_fft=None,
width=1.0, decim=1, return_itc=False, n_jobs=1):
"""Compute power and intertrial coherence using Stockwell (S) transform.
See [1]_, [2]_, [3]_, [4]_ for more information.
Parameters
----------
data : ndarray
The signal to transform. Any dimensionality supported as long
as the last dimension is time.
sfreq : float
The sampling frequency.
fmin : None, float
The minimum frequency to include. If None defaults to the minimum fft
frequency greater than zero.
fmax : None, float
The maximum frequency to include. If None defaults to the maximum fft.
n_fft : int | None
The length of the windows used for FFT. If None, it defaults to the
next power of 2 larger than the signal length.
width : float
The width of the Gaussian window. If < 1, increased temporal
resolution, if > 1, increased frequency resolution. Defaults to 1.
(classical S-Transform).
decim : int
The decimation factor on the time axis. To reduce memory usage.
return_itc : bool
Return intertrial coherence (ITC) as well as averaged power.
%(n_jobs)s
Returns
-------
st_power : ndarray
The multitaper power of the Stockwell transformed data.
The last two dimensions are frequency and time.
itc : ndarray
The intertrial coherence. Only returned if return_itc is True.
freqs : ndarray
The frequencies.
See Also
--------
mne.time_frequency.tfr_stockwell
mne.time_frequency.tfr_multitaper
mne.time_frequency.tfr_array_multitaper
mne.time_frequency.tfr_morlet
mne.time_frequency.tfr_array_morlet
References
----------
.. [1] Stockwell, R. G. "Why use the S-transform." AMS Pseudo-differential
operators: Partial differential equations and time-frequency
analysis 52 (2007): 279-309.
.. [2] Moukadem, A., Bouguila, Z., Abdeslam, D. O, and Dieterlen, A.
Stockwell transform optimization applied on the detection of split in
heart sounds (2014). Signal Processing Conference (EUSIPCO), 2013
Proceedings of the 22nd European, pages 2015--2019.
.. [3] Wheat, K., Cornelissen, P. L., Frost, S.J, and Peter C. Hansen
(2010). During Visual Word Recognition, Phonology Is Accessed
within 100 ms and May Be Mediated by a Speech Production
Code: Evidence from Magnetoencephalography. The Journal of
Neuroscience, 30 (15), 5229-5233.
.. [4] K. A. Jones and B. Porjesz and D. Chorlian and M. Rangaswamy and C.
Kamarajan and A. Padmanabhapillai and A. Stimus and H. Begleiter
(2006). S-transform time-frequency analysis of P300 reveals deficits in
individuals diagnosed with alcoholism.
Clinical Neurophysiology 117 2128--2143
"""
n_epochs, n_channels = data.shape[:2]
n_out = data.shape[2] // decim + bool(data.shape[2] % decim)
data, n_fft_, zero_pad = _check_input_st(data, n_fft)
freqs = fftpack.fftfreq(n_fft_, 1. / sfreq)
if fmin is None:
fmin = freqs[freqs > 0][0]
if fmax is None:
fmax = freqs.max()
start_f = np.abs(freqs - fmin).argmin()
stop_f = np.abs(freqs - fmax).argmin()
freqs = freqs[start_f:stop_f]
W = _precompute_st_windows(data.shape[-1], start_f, stop_f, sfreq, width)
n_freq = stop_f - start_f
psd = np.empty((n_channels, n_freq, n_out))
itc = np.empty((n_channels, n_freq, n_out)) if return_itc else None
parallel, my_st, _ = parallel_func(_st_power_itc, n_jobs)
tfrs = parallel(my_st(data[:, c, :], start_f, return_itc, zero_pad,
decim, W)
for c in range(n_channels))
for c, (this_psd, this_itc) in enumerate(iter(tfrs)):
psd[c] = this_psd
if this_itc is not None:
itc[c] = this_itc
return psd, itc, freqs
@verbose
def tfr_stockwell(inst, fmin=None, fmax=None, n_fft=None,
width=1.0, decim=1, return_itc=False, n_jobs=1,
verbose=None):
"""Time-Frequency Representation (TFR) using Stockwell Transform.
Parameters
----------
inst : Epochs | Evoked
The epochs or evoked object.
fmin : None, float
The minimum frequency to include. If None defaults to the minimum fft
frequency greater than zero.
fmax : None, float
The maximum frequency to include. If None defaults to the maximum fft.
n_fft : int | None
The length of the windows used for FFT. If None, it defaults to the
next power of 2 larger than the signal length.
width : float
The width of the Gaussian window. If < 1, increased temporal
resolution, if > 1, increased frequency resolution. Defaults to 1.
(classical S-Transform).
decim : int
The decimation factor on the time axis. To reduce memory usage.
return_itc : bool
Return intertrial coherence (ITC) as well as averaged power.
n_jobs : int
The number of jobs to run in parallel (over channels).
%(verbose)s
Returns
-------
power : AverageTFR
The averaged power.
itc : AverageTFR
The intertrial coherence. Only returned if return_itc is True.
See Also
--------
mne.time_frequency.tfr_array_stockwell
mne.time_frequency.tfr_multitaper
mne.time_frequency.tfr_array_multitaper
mne.time_frequency.tfr_morlet
mne.time_frequency.tfr_array_morlet
Notes
-----
.. versionadded:: 0.9.0
"""
# verbose dec is used b/c subfunctions are verbose
data = _get_data(inst, return_itc)
picks = _pick_data_channels(inst.info)
info = pick_info(inst.info, picks)
data = data[:, picks, :]
n_jobs = check_n_jobs(n_jobs)
power, itc, freqs = tfr_array_stockwell(data, sfreq=info['sfreq'],
fmin=fmin, fmax=fmax, n_fft=n_fft,
width=width, decim=decim,
return_itc=return_itc,
n_jobs=n_jobs)
times = inst.times[::decim].copy()
nave = len(data)
out = AverageTFR(info, power, times, freqs, nave, method='stockwell-power')
if return_itc:
out = (out, AverageTFR(deepcopy(info), itc, times.copy(),
freqs.copy(), nave, method='stockwell-itc'))
return out