forked from Reference-LAPACK/lapack
-
Notifications
You must be signed in to change notification settings - Fork 0
/
clatm4.f
401 lines (401 loc) · 11.4 KB
/
clatm4.f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
*> \brief \b CLATM4
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE CLATM4( ITYPE, N, NZ1, NZ2, RSIGN, AMAGN, RCOND,
* TRIANG, IDIST, ISEED, A, LDA )
*
* .. Scalar Arguments ..
* LOGICAL RSIGN
* INTEGER IDIST, ITYPE, LDA, N, NZ1, NZ2
* REAL AMAGN, RCOND, TRIANG
* ..
* .. Array Arguments ..
* INTEGER ISEED( 4 )
* COMPLEX A( LDA, * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> CLATM4 generates basic square matrices, which may later be
*> multiplied by others in order to produce test matrices. It is
*> intended mainly to be used to test the generalized eigenvalue
*> routines.
*>
*> It first generates the diagonal and (possibly) subdiagonal,
*> according to the value of ITYPE, NZ1, NZ2, RSIGN, AMAGN, and RCOND.
*> It then fills in the upper triangle with random numbers, if TRIANG is
*> non-zero.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] ITYPE
*> \verbatim
*> ITYPE is INTEGER
*> The "type" of matrix on the diagonal and sub-diagonal.
*> If ITYPE < 0, then type abs(ITYPE) is generated and then
*> swapped end for end (A(I,J) := A'(N-J,N-I).) See also
*> the description of AMAGN and RSIGN.
*>
*> Special types:
*> = 0: the zero matrix.
*> = 1: the identity.
*> = 2: a transposed Jordan block.
*> = 3: If N is odd, then a k+1 x k+1 transposed Jordan block
*> followed by a k x k identity block, where k=(N-1)/2.
*> If N is even, then k=(N-2)/2, and a zero diagonal entry
*> is tacked onto the end.
*>
*> Diagonal types. The diagonal consists of NZ1 zeros, then
*> k=N-NZ1-NZ2 nonzeros. The subdiagonal is zero. ITYPE
*> specifies the nonzero diagonal entries as follows:
*> = 4: 1, ..., k
*> = 5: 1, RCOND, ..., RCOND
*> = 6: 1, ..., 1, RCOND
*> = 7: 1, a, a^2, ..., a^(k-1)=RCOND
*> = 8: 1, 1-d, 1-2*d, ..., 1-(k-1)*d=RCOND
*> = 9: random numbers chosen from (RCOND,1)
*> = 10: random numbers with distribution IDIST (see CLARND.)
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The order of the matrix.
*> \endverbatim
*>
*> \param[in] NZ1
*> \verbatim
*> NZ1 is INTEGER
*> If abs(ITYPE) > 3, then the first NZ1 diagonal entries will
*> be zero.
*> \endverbatim
*>
*> \param[in] NZ2
*> \verbatim
*> NZ2 is INTEGER
*> If abs(ITYPE) > 3, then the last NZ2 diagonal entries will
*> be zero.
*> \endverbatim
*>
*> \param[in] RSIGN
*> \verbatim
*> RSIGN is LOGICAL
*> = .TRUE.: The diagonal and subdiagonal entries will be
*> multiplied by random numbers of magnitude 1.
*> = .FALSE.: The diagonal and subdiagonal entries will be
*> left as they are (usually non-negative real.)
*> \endverbatim
*>
*> \param[in] AMAGN
*> \verbatim
*> AMAGN is REAL
*> The diagonal and subdiagonal entries will be multiplied by
*> AMAGN.
*> \endverbatim
*>
*> \param[in] RCOND
*> \verbatim
*> RCOND is REAL
*> If abs(ITYPE) > 4, then the smallest diagonal entry will be
*> RCOND. RCOND must be between 0 and 1.
*> \endverbatim
*>
*> \param[in] TRIANG
*> \verbatim
*> TRIANG is REAL
*> The entries above the diagonal will be random numbers with
*> magnitude bounded by TRIANG (i.e., random numbers multiplied
*> by TRIANG.)
*> \endverbatim
*>
*> \param[in] IDIST
*> \verbatim
*> IDIST is INTEGER
*> On entry, DIST specifies the type of distribution to be used
*> to generate a random matrix .
*> = 1: real and imaginary parts each UNIFORM( 0, 1 )
*> = 2: real and imaginary parts each UNIFORM( -1, 1 )
*> = 3: real and imaginary parts each NORMAL( 0, 1 )
*> = 4: complex number uniform in DISK( 0, 1 )
*> \endverbatim
*>
*> \param[in,out] ISEED
*> \verbatim
*> ISEED is INTEGER array, dimension (4)
*> On entry ISEED specifies the seed of the random number
*> generator. The values of ISEED are changed on exit, and can
*> be used in the next call to CLATM4 to continue the same
*> random number sequence.
*> Note: ISEED(4) should be odd, for the random number generator
*> used at present.
*> \endverbatim
*>
*> \param[out] A
*> \verbatim
*> A is COMPLEX array, dimension (LDA, N)
*> Array to be computed.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> Leading dimension of A. Must be at least 1 and at least N.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup complex_eig
*
* =====================================================================
SUBROUTINE CLATM4( ITYPE, N, NZ1, NZ2, RSIGN, AMAGN, RCOND,
$ TRIANG, IDIST, ISEED, A, LDA )
*
* -- LAPACK test routine --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
* .. Scalar Arguments ..
LOGICAL RSIGN
INTEGER IDIST, ITYPE, LDA, N, NZ1, NZ2
REAL AMAGN, RCOND, TRIANG
* ..
* .. Array Arguments ..
INTEGER ISEED( 4 )
COMPLEX A( LDA, * )
* ..
*
* =====================================================================
*
* .. Parameters ..
REAL ZERO, ONE
PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
COMPLEX CZERO, CONE
PARAMETER ( CZERO = ( 0.0E+0, 0.0E+0 ),
$ CONE = ( 1.0E+0, 0.0E+0 ) )
* ..
* .. Local Scalars ..
INTEGER I, ISDB, ISDE, JC, JD, JR, K, KBEG, KEND, KLEN
REAL ALPHA
COMPLEX CTEMP
* ..
* .. External Functions ..
REAL SLARAN
COMPLEX CLARND
EXTERNAL SLARAN, CLARND
* ..
* .. External Subroutines ..
EXTERNAL CLASET
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, CMPLX, EXP, LOG, MAX, MIN, MOD, REAL
* ..
* .. Executable Statements ..
*
IF( N.LE.0 )
$ RETURN
CALL CLASET( 'Full', N, N, CZERO, CZERO, A, LDA )
*
* Insure a correct ISEED
*
IF( MOD( ISEED( 4 ), 2 ).NE.1 )
$ ISEED( 4 ) = ISEED( 4 ) + 1
*
* Compute diagonal and subdiagonal according to ITYPE, NZ1, NZ2,
* and RCOND
*
IF( ITYPE.NE.0 ) THEN
IF( ABS( ITYPE ).GE.4 ) THEN
KBEG = MAX( 1, MIN( N, NZ1+1 ) )
KEND = MAX( KBEG, MIN( N, N-NZ2 ) )
KLEN = KEND + 1 - KBEG
ELSE
KBEG = 1
KEND = N
KLEN = N
END IF
ISDB = 1
ISDE = 0
GO TO ( 10, 30, 50, 80, 100, 120, 140, 160,
$ 180, 200 )ABS( ITYPE )
*
* abs(ITYPE) = 1: Identity
*
10 CONTINUE
DO 20 JD = 1, N
A( JD, JD ) = CONE
20 CONTINUE
GO TO 220
*
* abs(ITYPE) = 2: Transposed Jordan block
*
30 CONTINUE
DO 40 JD = 1, N - 1
A( JD+1, JD ) = CONE
40 CONTINUE
ISDB = 1
ISDE = N - 1
GO TO 220
*
* abs(ITYPE) = 3: Transposed Jordan block, followed by the
* identity.
*
50 CONTINUE
K = ( N-1 ) / 2
DO 60 JD = 1, K
A( JD+1, JD ) = CONE
60 CONTINUE
ISDB = 1
ISDE = K
DO 70 JD = K + 2, 2*K + 1
A( JD, JD ) = CONE
70 CONTINUE
GO TO 220
*
* abs(ITYPE) = 4: 1,...,k
*
80 CONTINUE
DO 90 JD = KBEG, KEND
A( JD, JD ) = CMPLX( JD-NZ1 )
90 CONTINUE
GO TO 220
*
* abs(ITYPE) = 5: One large D value:
*
100 CONTINUE
DO 110 JD = KBEG + 1, KEND
A( JD, JD ) = CMPLX( RCOND )
110 CONTINUE
A( KBEG, KBEG ) = CONE
GO TO 220
*
* abs(ITYPE) = 6: One small D value:
*
120 CONTINUE
DO 130 JD = KBEG, KEND - 1
A( JD, JD ) = CONE
130 CONTINUE
A( KEND, KEND ) = CMPLX( RCOND )
GO TO 220
*
* abs(ITYPE) = 7: Exponentially distributed D values:
*
140 CONTINUE
A( KBEG, KBEG ) = CONE
IF( KLEN.GT.1 ) THEN
ALPHA = RCOND**( ONE / REAL( KLEN-1 ) )
DO 150 I = 2, KLEN
A( NZ1+I, NZ1+I ) = CMPLX( ALPHA**REAL( I-1 ) )
150 CONTINUE
END IF
GO TO 220
*
* abs(ITYPE) = 8: Arithmetically distributed D values:
*
160 CONTINUE
A( KBEG, KBEG ) = CONE
IF( KLEN.GT.1 ) THEN
ALPHA = ( ONE-RCOND ) / REAL( KLEN-1 )
DO 170 I = 2, KLEN
A( NZ1+I, NZ1+I ) = CMPLX( REAL( KLEN-I )*ALPHA+RCOND )
170 CONTINUE
END IF
GO TO 220
*
* abs(ITYPE) = 9: Randomly distributed D values on ( RCOND, 1):
*
180 CONTINUE
ALPHA = LOG( RCOND )
DO 190 JD = KBEG, KEND
A( JD, JD ) = EXP( ALPHA*SLARAN( ISEED ) )
190 CONTINUE
GO TO 220
*
* abs(ITYPE) = 10: Randomly distributed D values from DIST
*
200 CONTINUE
DO 210 JD = KBEG, KEND
A( JD, JD ) = CLARND( IDIST, ISEED )
210 CONTINUE
*
220 CONTINUE
*
* Scale by AMAGN
*
DO 230 JD = KBEG, KEND
A( JD, JD ) = AMAGN*REAL( A( JD, JD ) )
230 CONTINUE
DO 240 JD = ISDB, ISDE
A( JD+1, JD ) = AMAGN*REAL( A( JD+1, JD ) )
240 CONTINUE
*
* If RSIGN = .TRUE., assign random signs to diagonal and
* subdiagonal
*
IF( RSIGN ) THEN
DO 250 JD = KBEG, KEND
IF( REAL( A( JD, JD ) ).NE.ZERO ) THEN
CTEMP = CLARND( 3, ISEED )
CTEMP = CTEMP / ABS( CTEMP )
A( JD, JD ) = CTEMP*REAL( A( JD, JD ) )
END IF
250 CONTINUE
DO 260 JD = ISDB, ISDE
IF( REAL( A( JD+1, JD ) ).NE.ZERO ) THEN
CTEMP = CLARND( 3, ISEED )
CTEMP = CTEMP / ABS( CTEMP )
A( JD+1, JD ) = CTEMP*REAL( A( JD+1, JD ) )
END IF
260 CONTINUE
END IF
*
* Reverse if ITYPE < 0
*
IF( ITYPE.LT.0 ) THEN
DO 270 JD = KBEG, ( KBEG+KEND-1 ) / 2
CTEMP = A( JD, JD )
A( JD, JD ) = A( KBEG+KEND-JD, KBEG+KEND-JD )
A( KBEG+KEND-JD, KBEG+KEND-JD ) = CTEMP
270 CONTINUE
DO 280 JD = 1, ( N-1 ) / 2
CTEMP = A( JD+1, JD )
A( JD+1, JD ) = A( N+1-JD, N-JD )
A( N+1-JD, N-JD ) = CTEMP
280 CONTINUE
END IF
*
END IF
*
* Fill in upper triangle
*
IF( TRIANG.NE.ZERO ) THEN
DO 300 JC = 2, N
DO 290 JR = 1, JC - 1
A( JR, JC ) = TRIANG*CLARND( IDIST, ISEED )
290 CONTINUE
300 CONTINUE
END IF
*
RETURN
*
* End of CLATM4
*
END