forked from Reference-LAPACK/lapack
-
Notifications
You must be signed in to change notification settings - Fork 0
/
dchkbd.f
1527 lines (1527 loc) · 51.9 KB
/
dchkbd.f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
*> \brief \b DCHKBD
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE DCHKBD( NSIZES, MVAL, NVAL, NTYPES, DOTYPE, NRHS,
* ISEED, THRESH, A, LDA, BD, BE, S1, S2, X, LDX,
* Y, Z, Q, LDQ, PT, LDPT, U, VT, WORK, LWORK,
* IWORK, NOUT, INFO )
*
* .. Scalar Arguments ..
* INTEGER INFO, LDA, LDPT, LDQ, LDX, LWORK, NOUT, NRHS,
* $ NSIZES, NTYPES
* DOUBLE PRECISION THRESH
* ..
* .. Array Arguments ..
* LOGICAL DOTYPE( * )
* INTEGER ISEED( 4 ), IWORK( * ), MVAL( * ), NVAL( * )
* DOUBLE PRECISION A( LDA, * ), BD( * ), BE( * ), PT( LDPT, * ),
* $ Q( LDQ, * ), S1( * ), S2( * ), U( LDPT, * ),
* $ VT( LDPT, * ), WORK( * ), X( LDX, * ),
* $ Y( LDX, * ), Z( LDX, * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> DCHKBD checks the singular value decomposition (SVD) routines.
*>
*> DGEBRD reduces a real general m by n matrix A to upper or lower
*> bidiagonal form B by an orthogonal transformation: Q' * A * P = B
*> (or A = Q * B * P'). The matrix B is upper bidiagonal if m >= n
*> and lower bidiagonal if m < n.
*>
*> DORGBR generates the orthogonal matrices Q and P' from DGEBRD.
*> Note that Q and P are not necessarily square.
*>
*> DBDSQR computes the singular value decomposition of the bidiagonal
*> matrix B as B = U S V'. It is called three times to compute
*> 1) B = U S1 V', where S1 is the diagonal matrix of singular
*> values and the columns of the matrices U and V are the left
*> and right singular vectors, respectively, of B.
*> 2) Same as 1), but the singular values are stored in S2 and the
*> singular vectors are not computed.
*> 3) A = (UQ) S (P'V'), the SVD of the original matrix A.
*> In addition, DBDSQR has an option to apply the left orthogonal matrix
*> U to a matrix X, useful in least squares applications.
*>
*> DBDSDC computes the singular value decomposition of the bidiagonal
*> matrix B as B = U S V' using divide-and-conquer. It is called twice
*> to compute
*> 1) B = U S1 V', where S1 is the diagonal matrix of singular
*> values and the columns of the matrices U and V are the left
*> and right singular vectors, respectively, of B.
*> 2) Same as 1), but the singular values are stored in S2 and the
*> singular vectors are not computed.
*>
*> DBDSVDX computes the singular value decomposition of the bidiagonal
*> matrix B as B = U S V' using bisection and inverse iteration. It is
*> called six times to compute
*> 1) B = U S1 V', RANGE='A', where S1 is the diagonal matrix of singular
*> values and the columns of the matrices U and V are the left
*> and right singular vectors, respectively, of B.
*> 2) Same as 1), but the singular values are stored in S2 and the
*> singular vectors are not computed.
*> 3) B = U S1 V', RANGE='I', with where S1 is the diagonal matrix of singular
*> values and the columns of the matrices U and V are the left
*> and right singular vectors, respectively, of B
*> 4) Same as 3), but the singular values are stored in S2 and the
*> singular vectors are not computed.
*> 5) B = U S1 V', RANGE='V', with where S1 is the diagonal matrix of singular
*> values and the columns of the matrices U and V are the left
*> and right singular vectors, respectively, of B
*> 6) Same as 5), but the singular values are stored in S2 and the
*> singular vectors are not computed.
*>
*> For each pair of matrix dimensions (M,N) and each selected matrix
*> type, an M by N matrix A and an M by NRHS matrix X are generated.
*> The problem dimensions are as follows
*> A: M x N
*> Q: M x min(M,N) (but M x M if NRHS > 0)
*> P: min(M,N) x N
*> B: min(M,N) x min(M,N)
*> U, V: min(M,N) x min(M,N)
*> S1, S2 diagonal, order min(M,N)
*> X: M x NRHS
*>
*> For each generated matrix, 14 tests are performed:
*>
*> Test DGEBRD and DORGBR
*>
*> (1) | A - Q B PT | / ( |A| max(M,N) ulp ), PT = P'
*>
*> (2) | I - Q' Q | / ( M ulp )
*>
*> (3) | I - PT PT' | / ( N ulp )
*>
*> Test DBDSQR on bidiagonal matrix B
*>
*> (4) | B - U S1 VT | / ( |B| min(M,N) ulp ), VT = V'
*>
*> (5) | Y - U Z | / ( |Y| max(min(M,N),k) ulp ), where Y = Q' X
*> and Z = U' Y.
*> (6) | I - U' U | / ( min(M,N) ulp )
*>
*> (7) | I - VT VT' | / ( min(M,N) ulp )
*>
*> (8) S1 contains min(M,N) nonnegative values in decreasing order.
*> (Return 0 if true, 1/ULP if false.)
*>
*> (9) | S1 - S2 | / ( |S1| ulp ), where S2 is computed without
*> computing U and V.
*>
*> (10) 0 if the true singular values of B are within THRESH of
*> those in S1. 2*THRESH if they are not. (Tested using
*> DSVDCH)
*>
*> Test DBDSQR on matrix A
*>
*> (11) | A - (QU) S (VT PT) | / ( |A| max(M,N) ulp )
*>
*> (12) | X - (QU) Z | / ( |X| max(M,k) ulp )
*>
*> (13) | I - (QU)'(QU) | / ( M ulp )
*>
*> (14) | I - (VT PT) (PT'VT') | / ( N ulp )
*>
*> Test DBDSDC on bidiagonal matrix B
*>
*> (15) | B - U S1 VT | / ( |B| min(M,N) ulp ), VT = V'
*>
*> (16) | I - U' U | / ( min(M,N) ulp )
*>
*> (17) | I - VT VT' | / ( min(M,N) ulp )
*>
*> (18) S1 contains min(M,N) nonnegative values in decreasing order.
*> (Return 0 if true, 1/ULP if false.)
*>
*> (19) | S1 - S2 | / ( |S1| ulp ), where S2 is computed without
*> computing U and V.
*> Test DBDSVDX on bidiagonal matrix B
*>
*> (20) | B - U S1 VT | / ( |B| min(M,N) ulp ), VT = V'
*>
*> (21) | I - U' U | / ( min(M,N) ulp )
*>
*> (22) | I - VT VT' | / ( min(M,N) ulp )
*>
*> (23) S1 contains min(M,N) nonnegative values in decreasing order.
*> (Return 0 if true, 1/ULP if false.)
*>
*> (24) | S1 - S2 | / ( |S1| ulp ), where S2 is computed without
*> computing U and V.
*>
*> (25) | S1 - U' B VT' | / ( |S| n ulp ) DBDSVDX('V', 'I')
*>
*> (26) | I - U' U | / ( min(M,N) ulp )
*>
*> (27) | I - VT VT' | / ( min(M,N) ulp )
*>
*> (28) S1 contains min(M,N) nonnegative values in decreasing order.
*> (Return 0 if true, 1/ULP if false.)
*>
*> (29) | S1 - S2 | / ( |S1| ulp ), where S2 is computed without
*> computing U and V.
*>
*> (30) | S1 - U' B VT' | / ( |S1| n ulp ) DBDSVDX('V', 'V')
*>
*> (31) | I - U' U | / ( min(M,N) ulp )
*>
*> (32) | I - VT VT' | / ( min(M,N) ulp )
*>
*> (33) S1 contains min(M,N) nonnegative values in decreasing order.
*> (Return 0 if true, 1/ULP if false.)
*>
*> (34) | S1 - S2 | / ( |S1| ulp ), where S2 is computed without
*> computing U and V.
*>
*> The possible matrix types are
*>
*> (1) The zero matrix.
*> (2) The identity matrix.
*>
*> (3) A diagonal matrix with evenly spaced entries
*> 1, ..., ULP and random signs.
*> (ULP = (first number larger than 1) - 1 )
*> (4) A diagonal matrix with geometrically spaced entries
*> 1, ..., ULP and random signs.
*> (5) A diagonal matrix with "clustered" entries 1, ULP, ..., ULP
*> and random signs.
*>
*> (6) Same as (3), but multiplied by SQRT( overflow threshold )
*> (7) Same as (3), but multiplied by SQRT( underflow threshold )
*>
*> (8) A matrix of the form U D V, where U and V are orthogonal and
*> D has evenly spaced entries 1, ..., ULP with random signs
*> on the diagonal.
*>
*> (9) A matrix of the form U D V, where U and V are orthogonal and
*> D has geometrically spaced entries 1, ..., ULP with random
*> signs on the diagonal.
*>
*> (10) A matrix of the form U D V, where U and V are orthogonal and
*> D has "clustered" entries 1, ULP,..., ULP with random
*> signs on the diagonal.
*>
*> (11) Same as (8), but multiplied by SQRT( overflow threshold )
*> (12) Same as (8), but multiplied by SQRT( underflow threshold )
*>
*> (13) Rectangular matrix with random entries chosen from (-1,1).
*> (14) Same as (13), but multiplied by SQRT( overflow threshold )
*> (15) Same as (13), but multiplied by SQRT( underflow threshold )
*>
*> Special case:
*> (16) A bidiagonal matrix with random entries chosen from a
*> logarithmic distribution on [ulp^2,ulp^(-2)] (I.e., each
*> entry is e^x, where x is chosen uniformly on
*> [ 2 log(ulp), -2 log(ulp) ] .) For *this* type:
*> (a) DGEBRD is not called to reduce it to bidiagonal form.
*> (b) the bidiagonal is min(M,N) x min(M,N); if M<N, the
*> matrix will be lower bidiagonal, otherwise upper.
*> (c) only tests 5--8 and 14 are performed.
*>
*> A subset of the full set of matrix types may be selected through
*> the logical array DOTYPE.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] NSIZES
*> \verbatim
*> NSIZES is INTEGER
*> The number of values of M and N contained in the vectors
*> MVAL and NVAL. The matrix sizes are used in pairs (M,N).
*> \endverbatim
*>
*> \param[in] MVAL
*> \verbatim
*> MVAL is INTEGER array, dimension (NM)
*> The values of the matrix row dimension M.
*> \endverbatim
*>
*> \param[in] NVAL
*> \verbatim
*> NVAL is INTEGER array, dimension (NM)
*> The values of the matrix column dimension N.
*> \endverbatim
*>
*> \param[in] NTYPES
*> \verbatim
*> NTYPES is INTEGER
*> The number of elements in DOTYPE. If it is zero, DCHKBD
*> does nothing. It must be at least zero. If it is MAXTYP+1
*> and NSIZES is 1, then an additional type, MAXTYP+1 is
*> defined, which is to use whatever matrices are in A and B.
*> This is only useful if DOTYPE(1:MAXTYP) is .FALSE. and
*> DOTYPE(MAXTYP+1) is .TRUE. .
*> \endverbatim
*>
*> \param[in] DOTYPE
*> \verbatim
*> DOTYPE is LOGICAL array, dimension (NTYPES)
*> If DOTYPE(j) is .TRUE., then for each size (m,n), a matrix
*> of type j will be generated. If NTYPES is smaller than the
*> maximum number of types defined (PARAMETER MAXTYP), then
*> types NTYPES+1 through MAXTYP will not be generated. If
*> NTYPES is larger than MAXTYP, DOTYPE(MAXTYP+1) through
*> DOTYPE(NTYPES) will be ignored.
*> \endverbatim
*>
*> \param[in] NRHS
*> \verbatim
*> NRHS is INTEGER
*> The number of columns in the "right-hand side" matrices X, Y,
*> and Z, used in testing DBDSQR. If NRHS = 0, then the
*> operations on the right-hand side will not be tested.
*> NRHS must be at least 0.
*> \endverbatim
*>
*> \param[in,out] ISEED
*> \verbatim
*> ISEED is INTEGER array, dimension (4)
*> On entry ISEED specifies the seed of the random number
*> generator. The array elements should be between 0 and 4095;
*> if not they will be reduced mod 4096. Also, ISEED(4) must
*> be odd. The values of ISEED are changed on exit, and can be
*> used in the next call to DCHKBD to continue the same random
*> number sequence.
*> \endverbatim
*>
*> \param[in] THRESH
*> \verbatim
*> THRESH is DOUBLE PRECISION
*> The threshold value for the test ratios. A result is
*> included in the output file if RESULT >= THRESH. To have
*> every test ratio printed, use THRESH = 0. Note that the
*> expected value of the test ratios is O(1), so THRESH should
*> be a reasonably small multiple of 1, e.g., 10 or 100.
*> \endverbatim
*>
*> \param[out] A
*> \verbatim
*> A is DOUBLE PRECISION array, dimension (LDA,NMAX)
*> where NMAX is the maximum value of N in NVAL.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of the array A. LDA >= max(1,MMAX),
*> where MMAX is the maximum value of M in MVAL.
*> \endverbatim
*>
*> \param[out] BD
*> \verbatim
*> BD is DOUBLE PRECISION array, dimension
*> (max(min(MVAL(j),NVAL(j))))
*> \endverbatim
*>
*> \param[out] BE
*> \verbatim
*> BE is DOUBLE PRECISION array, dimension
*> (max(min(MVAL(j),NVAL(j))))
*> \endverbatim
*>
*> \param[out] S1
*> \verbatim
*> S1 is DOUBLE PRECISION array, dimension
*> (max(min(MVAL(j),NVAL(j))))
*> \endverbatim
*>
*> \param[out] S2
*> \verbatim
*> S2 is DOUBLE PRECISION array, dimension
*> (max(min(MVAL(j),NVAL(j))))
*> \endverbatim
*>
*> \param[out] X
*> \verbatim
*> X is DOUBLE PRECISION array, dimension (LDX,NRHS)
*> \endverbatim
*>
*> \param[in] LDX
*> \verbatim
*> LDX is INTEGER
*> The leading dimension of the arrays X, Y, and Z.
*> LDX >= max(1,MMAX)
*> \endverbatim
*>
*> \param[out] Y
*> \verbatim
*> Y is DOUBLE PRECISION array, dimension (LDX,NRHS)
*> \endverbatim
*>
*> \param[out] Z
*> \verbatim
*> Z is DOUBLE PRECISION array, dimension (LDX,NRHS)
*> \endverbatim
*>
*> \param[out] Q
*> \verbatim
*> Q is DOUBLE PRECISION array, dimension (LDQ,MMAX)
*> \endverbatim
*>
*> \param[in] LDQ
*> \verbatim
*> LDQ is INTEGER
*> The leading dimension of the array Q. LDQ >= max(1,MMAX).
*> \endverbatim
*>
*> \param[out] PT
*> \verbatim
*> PT is DOUBLE PRECISION array, dimension (LDPT,NMAX)
*> \endverbatim
*>
*> \param[in] LDPT
*> \verbatim
*> LDPT is INTEGER
*> The leading dimension of the arrays PT, U, and V.
*> LDPT >= max(1, max(min(MVAL(j),NVAL(j)))).
*> \endverbatim
*>
*> \param[out] U
*> \verbatim
*> U is DOUBLE PRECISION array, dimension
*> (LDPT,max(min(MVAL(j),NVAL(j))))
*> \endverbatim
*>
*> \param[out] VT
*> \verbatim
*> VT is DOUBLE PRECISION array, dimension
*> (LDPT,max(min(MVAL(j),NVAL(j))))
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is DOUBLE PRECISION array, dimension (LWORK)
*> \endverbatim
*>
*> \param[in] LWORK
*> \verbatim
*> LWORK is INTEGER
*> The number of entries in WORK. This must be at least
*> 3(M+N) and M(M + max(M,N,k) + 1) + N*min(M,N) for all
*> pairs (M,N)=(MM(j),NN(j))
*> \endverbatim
*>
*> \param[out] IWORK
*> \verbatim
*> IWORK is INTEGER array, dimension at least 8*min(M,N)
*> \endverbatim
*>
*> \param[in] NOUT
*> \verbatim
*> NOUT is INTEGER
*> The FORTRAN unit number for printing out error messages
*> (e.g., if a routine returns IINFO not equal to 0.)
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> If 0, then everything ran OK.
*> -1: NSIZES < 0
*> -2: Some MM(j) < 0
*> -3: Some NN(j) < 0
*> -4: NTYPES < 0
*> -6: NRHS < 0
*> -8: THRESH < 0
*> -11: LDA < 1 or LDA < MMAX, where MMAX is max( MM(j) ).
*> -17: LDB < 1 or LDB < MMAX.
*> -21: LDQ < 1 or LDQ < MMAX.
*> -23: LDPT< 1 or LDPT< MNMAX.
*> -27: LWORK too small.
*> If DLATMR, SLATMS, DGEBRD, DORGBR, or DBDSQR,
*> returns an error code, the
*> absolute value of it is returned.
*>
*>-----------------------------------------------------------------------
*>
*> Some Local Variables and Parameters:
*> ---- ----- --------- --- ----------
*>
*> ZERO, ONE Real 0 and 1.
*> MAXTYP The number of types defined.
*> NTEST The number of tests performed, or which can
*> be performed so far, for the current matrix.
*> MMAX Largest value in NN.
*> NMAX Largest value in NN.
*> MNMIN min(MM(j), NN(j)) (the dimension of the bidiagonal
*> matrix.)
*> MNMAX The maximum value of MNMIN for j=1,...,NSIZES.
*> NFAIL The number of tests which have exceeded THRESH
*> COND, IMODE Values to be passed to the matrix generators.
*> ANORM Norm of A; passed to matrix generators.
*>
*> OVFL, UNFL Overflow and underflow thresholds.
*> RTOVFL, RTUNFL Square roots of the previous 2 values.
*> ULP, ULPINV Finest relative precision and its inverse.
*>
*> The following four arrays decode JTYPE:
*> KTYPE(j) The general type (1-10) for type "j".
*> KMODE(j) The MODE value to be passed to the matrix
*> generator for type "j".
*> KMAGN(j) The order of magnitude ( O(1),
*> O(overflow^(1/2) ), O(underflow^(1/2) )
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup double_eig
*
* =====================================================================
SUBROUTINE DCHKBD( NSIZES, MVAL, NVAL, NTYPES, DOTYPE, NRHS,
$ ISEED, THRESH, A, LDA, BD, BE, S1, S2, X, LDX,
$ Y, Z, Q, LDQ, PT, LDPT, U, VT, WORK, LWORK,
$ IWORK, NOUT, INFO )
*
* -- LAPACK test routine --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
* .. Scalar Arguments ..
INTEGER INFO, LDA, LDPT, LDQ, LDX, LWORK, NOUT, NRHS,
$ NSIZES, NTYPES
DOUBLE PRECISION THRESH
* ..
* .. Array Arguments ..
LOGICAL DOTYPE( * )
INTEGER ISEED( 4 ), IWORK( * ), MVAL( * ), NVAL( * )
DOUBLE PRECISION A( LDA, * ), BD( * ), BE( * ), PT( LDPT, * ),
$ Q( LDQ, * ), S1( * ), S2( * ), U( LDPT, * ),
$ VT( LDPT, * ), WORK( * ), X( LDX, * ),
$ Y( LDX, * ), Z( LDX, * )
* ..
*
* ======================================================================
*
* .. Parameters ..
DOUBLE PRECISION ZERO, ONE, TWO, HALF
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0, TWO = 2.0D0,
$ HALF = 0.5D0 )
INTEGER MAXTYP
PARAMETER ( MAXTYP = 16 )
* ..
* .. Local Scalars ..
LOGICAL BADMM, BADNN, BIDIAG
CHARACTER UPLO
CHARACTER*3 PATH
INTEGER I, IINFO, IL, IMODE, ITEMP, ITYPE, IU, IWBD,
$ IWBE, IWBS, IWBZ, IWWORK, J, JCOL, JSIZE,
$ JTYPE, LOG2UI, M, MINWRK, MMAX, MNMAX, MNMIN,
$ MNMIN2, MQ, MTYPES, N, NFAIL, NMAX,
$ NS1, NS2, NTEST
DOUBLE PRECISION ABSTOL, AMNINV, ANORM, COND, OVFL, RTOVFL,
$ RTUNFL, TEMP1, TEMP2, ULP, ULPINV, UNFL,
$ VL, VU
* ..
* .. Local Arrays ..
INTEGER IDUM( 1 ), IOLDSD( 4 ), ISEED2( 4 ),
$ KMAGN( MAXTYP ), KMODE( MAXTYP ),
$ KTYPE( MAXTYP )
DOUBLE PRECISION DUM( 1 ), DUMMA( 1 ), RESULT( 40 )
* ..
* .. External Functions ..
DOUBLE PRECISION DLAMCH, DLARND, DSXT1
EXTERNAL DLAMCH, DLARND, DSXT1
* ..
* .. External Subroutines ..
EXTERNAL ALASUM, DBDSDC, DBDSQR, DBDSVDX, DBDT01,
$ DBDT02, DBDT03, DBDT04, DCOPY, DGEBRD,
$ DGEMM, DLACPY, DLAHD2, DLASET, DLATMR,
$ DLATMS, DORGBR, DORT01, XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, EXP, INT, LOG, MAX, MIN, SQRT
* ..
* .. Scalars in Common ..
LOGICAL LERR, OK
CHARACTER*32 SRNAMT
INTEGER INFOT, NUNIT
* ..
* .. Common blocks ..
COMMON / INFOC / INFOT, NUNIT, OK, LERR
COMMON / SRNAMC / SRNAMT
* ..
* .. Data statements ..
DATA KTYPE / 1, 2, 5*4, 5*6, 3*9, 10 /
DATA KMAGN / 2*1, 3*1, 2, 3, 3*1, 2, 3, 1, 2, 3, 0 /
DATA KMODE / 2*0, 4, 3, 1, 4, 4, 4, 3, 1, 4, 4, 0,
$ 0, 0, 0 /
* ..
* .. Executable Statements ..
*
* Check for errors
*
INFO = 0
*
BADMM = .FALSE.
BADNN = .FALSE.
MMAX = 1
NMAX = 1
MNMAX = 1
MINWRK = 1
DO 10 J = 1, NSIZES
MMAX = MAX( MMAX, MVAL( J ) )
IF( MVAL( J ).LT.0 )
$ BADMM = .TRUE.
NMAX = MAX( NMAX, NVAL( J ) )
IF( NVAL( J ).LT.0 )
$ BADNN = .TRUE.
MNMAX = MAX( MNMAX, MIN( MVAL( J ), NVAL( J ) ) )
MINWRK = MAX( MINWRK, 3*( MVAL( J )+NVAL( J ) ),
$ MVAL( J )*( MVAL( J )+MAX( MVAL( J ), NVAL( J ),
$ NRHS )+1 )+NVAL( J )*MIN( NVAL( J ), MVAL( J ) ) )
10 CONTINUE
*
* Check for errors
*
IF( NSIZES.LT.0 ) THEN
INFO = -1
ELSE IF( BADMM ) THEN
INFO = -2
ELSE IF( BADNN ) THEN
INFO = -3
ELSE IF( NTYPES.LT.0 ) THEN
INFO = -4
ELSE IF( NRHS.LT.0 ) THEN
INFO = -6
ELSE IF( LDA.LT.MMAX ) THEN
INFO = -11
ELSE IF( LDX.LT.MMAX ) THEN
INFO = -17
ELSE IF( LDQ.LT.MMAX ) THEN
INFO = -21
ELSE IF( LDPT.LT.MNMAX ) THEN
INFO = -23
ELSE IF( MINWRK.GT.LWORK ) THEN
INFO = -27
END IF
*
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'DCHKBD', -INFO )
RETURN
END IF
*
* Initialize constants
*
PATH( 1: 1 ) = 'Double precision'
PATH( 2: 3 ) = 'BD'
NFAIL = 0
NTEST = 0
UNFL = DLAMCH( 'Safe minimum' )
OVFL = DLAMCH( 'Overflow' )
ULP = DLAMCH( 'Precision' )
ULPINV = ONE / ULP
LOG2UI = INT( LOG( ULPINV ) / LOG( TWO ) )
RTUNFL = SQRT( UNFL )
RTOVFL = SQRT( OVFL )
INFOT = 0
ABSTOL = 2*UNFL
*
* Loop over sizes, types
*
DO 300 JSIZE = 1, NSIZES
M = MVAL( JSIZE )
N = NVAL( JSIZE )
MNMIN = MIN( M, N )
AMNINV = ONE / MAX( M, N, 1 )
*
IF( NSIZES.NE.1 ) THEN
MTYPES = MIN( MAXTYP, NTYPES )
ELSE
MTYPES = MIN( MAXTYP+1, NTYPES )
END IF
*
DO 290 JTYPE = 1, MTYPES
IF( .NOT.DOTYPE( JTYPE ) )
$ GO TO 290
*
DO 20 J = 1, 4
IOLDSD( J ) = ISEED( J )
20 CONTINUE
*
DO 30 J = 1, 34
RESULT( J ) = -ONE
30 CONTINUE
*
UPLO = ' '
*
* Compute "A"
*
* Control parameters:
*
* KMAGN KMODE KTYPE
* =1 O(1) clustered 1 zero
* =2 large clustered 2 identity
* =3 small exponential (none)
* =4 arithmetic diagonal, (w/ eigenvalues)
* =5 random symmetric, w/ eigenvalues
* =6 nonsymmetric, w/ singular values
* =7 random diagonal
* =8 random symmetric
* =9 random nonsymmetric
* =10 random bidiagonal (log. distrib.)
*
IF( MTYPES.GT.MAXTYP )
$ GO TO 100
*
ITYPE = KTYPE( JTYPE )
IMODE = KMODE( JTYPE )
*
* Compute norm
*
GO TO ( 40, 50, 60 )KMAGN( JTYPE )
*
40 CONTINUE
ANORM = ONE
GO TO 70
*
50 CONTINUE
ANORM = ( RTOVFL*ULP )*AMNINV
GO TO 70
*
60 CONTINUE
ANORM = RTUNFL*MAX( M, N )*ULPINV
GO TO 70
*
70 CONTINUE
*
CALL DLASET( 'Full', LDA, N, ZERO, ZERO, A, LDA )
IINFO = 0
COND = ULPINV
*
BIDIAG = .FALSE.
IF( ITYPE.EQ.1 ) THEN
*
* Zero matrix
*
IINFO = 0
*
ELSE IF( ITYPE.EQ.2 ) THEN
*
* Identity
*
DO 80 JCOL = 1, MNMIN
A( JCOL, JCOL ) = ANORM
80 CONTINUE
*
ELSE IF( ITYPE.EQ.4 ) THEN
*
* Diagonal Matrix, [Eigen]values Specified
*
CALL DLATMS( MNMIN, MNMIN, 'S', ISEED, 'N', WORK, IMODE,
$ COND, ANORM, 0, 0, 'N', A, LDA,
$ WORK( MNMIN+1 ), IINFO )
*
ELSE IF( ITYPE.EQ.5 ) THEN
*
* Symmetric, eigenvalues specified
*
CALL DLATMS( MNMIN, MNMIN, 'S', ISEED, 'S', WORK, IMODE,
$ COND, ANORM, M, N, 'N', A, LDA,
$ WORK( MNMIN+1 ), IINFO )
*
ELSE IF( ITYPE.EQ.6 ) THEN
*
* Nonsymmetric, singular values specified
*
CALL DLATMS( M, N, 'S', ISEED, 'N', WORK, IMODE, COND,
$ ANORM, M, N, 'N', A, LDA, WORK( MNMIN+1 ),
$ IINFO )
*
ELSE IF( ITYPE.EQ.7 ) THEN
*
* Diagonal, random entries
*
CALL DLATMR( MNMIN, MNMIN, 'S', ISEED, 'N', WORK, 6, ONE,
$ ONE, 'T', 'N', WORK( MNMIN+1 ), 1, ONE,
$ WORK( 2*MNMIN+1 ), 1, ONE, 'N', IWORK, 0, 0,
$ ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO )
*
ELSE IF( ITYPE.EQ.8 ) THEN
*
* Symmetric, random entries
*
CALL DLATMR( MNMIN, MNMIN, 'S', ISEED, 'S', WORK, 6, ONE,
$ ONE, 'T', 'N', WORK( MNMIN+1 ), 1, ONE,
$ WORK( M+MNMIN+1 ), 1, ONE, 'N', IWORK, M, N,
$ ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO )
*
ELSE IF( ITYPE.EQ.9 ) THEN
*
* Nonsymmetric, random entries
*
CALL DLATMR( M, N, 'S', ISEED, 'N', WORK, 6, ONE, ONE,
$ 'T', 'N', WORK( MNMIN+1 ), 1, ONE,
$ WORK( M+MNMIN+1 ), 1, ONE, 'N', IWORK, M, N,
$ ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO )
*
ELSE IF( ITYPE.EQ.10 ) THEN
*
* Bidiagonal, random entries
*
TEMP1 = -TWO*LOG( ULP )
DO 90 J = 1, MNMIN
BD( J ) = EXP( TEMP1*DLARND( 2, ISEED ) )
IF( J.LT.MNMIN )
$ BE( J ) = EXP( TEMP1*DLARND( 2, ISEED ) )
90 CONTINUE
*
IINFO = 0
BIDIAG = .TRUE.
IF( M.GE.N ) THEN
UPLO = 'U'
ELSE
UPLO = 'L'
END IF
ELSE
IINFO = 1
END IF
*
IF( IINFO.EQ.0 ) THEN
*
* Generate Right-Hand Side
*
IF( BIDIAG ) THEN
CALL DLATMR( MNMIN, NRHS, 'S', ISEED, 'N', WORK, 6,
$ ONE, ONE, 'T', 'N', WORK( MNMIN+1 ), 1,
$ ONE, WORK( 2*MNMIN+1 ), 1, ONE, 'N',
$ IWORK, MNMIN, NRHS, ZERO, ONE, 'NO', Y,
$ LDX, IWORK, IINFO )
ELSE
CALL DLATMR( M, NRHS, 'S', ISEED, 'N', WORK, 6, ONE,
$ ONE, 'T', 'N', WORK( M+1 ), 1, ONE,
$ WORK( 2*M+1 ), 1, ONE, 'N', IWORK, M,
$ NRHS, ZERO, ONE, 'NO', X, LDX, IWORK,
$ IINFO )
END IF
END IF
*
* Error Exit
*
IF( IINFO.NE.0 ) THEN
WRITE( NOUT, FMT = 9998 )'Generator', IINFO, M, N,
$ JTYPE, IOLDSD
INFO = ABS( IINFO )
RETURN
END IF
*
100 CONTINUE
*
* Call DGEBRD and DORGBR to compute B, Q, and P, do tests.
*
IF( .NOT.BIDIAG ) THEN
*
* Compute transformations to reduce A to bidiagonal form:
* B := Q' * A * P.
*
CALL DLACPY( ' ', M, N, A, LDA, Q, LDQ )
CALL DGEBRD( M, N, Q, LDQ, BD, BE, WORK, WORK( MNMIN+1 ),
$ WORK( 2*MNMIN+1 ), LWORK-2*MNMIN, IINFO )
*
* Check error code from DGEBRD.
*
IF( IINFO.NE.0 ) THEN
WRITE( NOUT, FMT = 9998 )'DGEBRD', IINFO, M, N,
$ JTYPE, IOLDSD
INFO = ABS( IINFO )
RETURN
END IF
*
CALL DLACPY( ' ', M, N, Q, LDQ, PT, LDPT )
IF( M.GE.N ) THEN
UPLO = 'U'
ELSE
UPLO = 'L'
END IF
*
* Generate Q
*
MQ = M
IF( NRHS.LE.0 )
$ MQ = MNMIN
CALL DORGBR( 'Q', M, MQ, N, Q, LDQ, WORK,
$ WORK( 2*MNMIN+1 ), LWORK-2*MNMIN, IINFO )
*
* Check error code from DORGBR.
*
IF( IINFO.NE.0 ) THEN
WRITE( NOUT, FMT = 9998 )'DORGBR(Q)', IINFO, M, N,
$ JTYPE, IOLDSD
INFO = ABS( IINFO )
RETURN
END IF
*
* Generate P'
*
CALL DORGBR( 'P', MNMIN, N, M, PT, LDPT, WORK( MNMIN+1 ),
$ WORK( 2*MNMIN+1 ), LWORK-2*MNMIN, IINFO )
*
* Check error code from DORGBR.
*
IF( IINFO.NE.0 ) THEN
WRITE( NOUT, FMT = 9998 )'DORGBR(P)', IINFO, M, N,
$ JTYPE, IOLDSD
INFO = ABS( IINFO )
RETURN
END IF
*
* Apply Q' to an M by NRHS matrix X: Y := Q' * X.
*
CALL DGEMM( 'Transpose', 'No transpose', M, NRHS, M, ONE,
$ Q, LDQ, X, LDX, ZERO, Y, LDX )
*
* Test 1: Check the decomposition A := Q * B * PT
* 2: Check the orthogonality of Q
* 3: Check the orthogonality of PT
*
CALL DBDT01( M, N, 1, A, LDA, Q, LDQ, BD, BE, PT, LDPT,
$ WORK, RESULT( 1 ) )
CALL DORT01( 'Columns', M, MQ, Q, LDQ, WORK, LWORK,
$ RESULT( 2 ) )
CALL DORT01( 'Rows', MNMIN, N, PT, LDPT, WORK, LWORK,
$ RESULT( 3 ) )
END IF
*
* Use DBDSQR to form the SVD of the bidiagonal matrix B:
* B := U * S1 * VT, and compute Z = U' * Y.
*
CALL DCOPY( MNMIN, BD, 1, S1, 1 )
IF( MNMIN.GT.0 )
$ CALL DCOPY( MNMIN-1, BE, 1, WORK, 1 )
CALL DLACPY( ' ', M, NRHS, Y, LDX, Z, LDX )
CALL DLASET( 'Full', MNMIN, MNMIN, ZERO, ONE, U, LDPT )
CALL DLASET( 'Full', MNMIN, MNMIN, ZERO, ONE, VT, LDPT )
*
CALL DBDSQR( UPLO, MNMIN, MNMIN, MNMIN, NRHS, S1, WORK, VT,
$ LDPT, U, LDPT, Z, LDX, WORK( MNMIN+1 ), IINFO )
*
* Check error code from DBDSQR.
*
IF( IINFO.NE.0 ) THEN
WRITE( NOUT, FMT = 9998 )'DBDSQR(vects)', IINFO, M, N,
$ JTYPE, IOLDSD
INFO = ABS( IINFO )
IF( IINFO.LT.0 ) THEN
RETURN
ELSE
RESULT( 4 ) = ULPINV
GO TO 270
END IF
END IF
*
* Use DBDSQR to compute only the singular values of the
* bidiagonal matrix B; U, VT, and Z should not be modified.
*
CALL DCOPY( MNMIN, BD, 1, S2, 1 )
IF( MNMIN.GT.0 )
$ CALL DCOPY( MNMIN-1, BE, 1, WORK, 1 )
*
CALL DBDSQR( UPLO, MNMIN, 0, 0, 0, S2, WORK, VT, LDPT, U,
$ LDPT, Z, LDX, WORK( MNMIN+1 ), IINFO )
*
* Check error code from DBDSQR.
*
IF( IINFO.NE.0 ) THEN
WRITE( NOUT, FMT = 9998 )'DBDSQR(values)', IINFO, M, N,
$ JTYPE, IOLDSD
INFO = ABS( IINFO )
IF( IINFO.LT.0 ) THEN
RETURN
ELSE
RESULT( 9 ) = ULPINV
GO TO 270
END IF
END IF
*
* Test 4: Check the decomposition B := U * S1 * VT
* 5: Check the computation Z := U' * Y
* 6: Check the orthogonality of U
* 7: Check the orthogonality of VT
*
CALL DBDT03( UPLO, MNMIN, 1, BD, BE, U, LDPT, S1, VT, LDPT,
$ WORK, RESULT( 4 ) )
CALL DBDT02( MNMIN, NRHS, Y, LDX, Z, LDX, U, LDPT, WORK,
$ RESULT( 5 ) )
CALL DORT01( 'Columns', MNMIN, MNMIN, U, LDPT, WORK, LWORK,
$ RESULT( 6 ) )
CALL DORT01( 'Rows', MNMIN, MNMIN, VT, LDPT, WORK, LWORK,
$ RESULT( 7 ) )
*
* Test 8: Check that the singular values are sorted in
* non-increasing order and are non-negative
*
RESULT( 8 ) = ZERO
DO 110 I = 1, MNMIN - 1
IF( S1( I ).LT.S1( I+1 ) )
$ RESULT( 8 ) = ULPINV
IF( S1( I ).LT.ZERO )
$ RESULT( 8 ) = ULPINV
110 CONTINUE
IF( MNMIN.GE.1 ) THEN
IF( S1( MNMIN ).LT.ZERO )
$ RESULT( 8 ) = ULPINV
END IF
*
* Test 9: Compare DBDSQR with and without singular vectors
*
TEMP2 = ZERO
*
DO 120 J = 1, MNMIN
TEMP1 = ABS( S1( J )-S2( J ) ) /
$ MAX( SQRT( UNFL )*MAX( S1( 1 ), ONE ),
$ ULP*MAX( ABS( S1( J ) ), ABS( S2( J ) ) ) )
TEMP2 = MAX( TEMP1, TEMP2 )
120 CONTINUE
*
RESULT( 9 ) = TEMP2
*
* Test 10: Sturm sequence test of singular values
* Go up by factors of two until it succeeds
*
TEMP1 = THRESH*( HALF-ULP )
*