forked from fudan-generative-vision/hallo
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_stage1.py
790 lines (698 loc) · 28.6 KB
/
train_stage1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
# pylint: disable=E1101,C0415,W0718,R0801
# scripts/train_stage1.py
"""
This is the main training script for stage 1 of the project.
It imports necessary packages, defines necessary classes and functions, and trains the model using the provided configuration.
The script includes the following classes and functions:
1. Net: A PyTorch model that takes noisy latents, timesteps, reference image latents, face embeddings,
and face masks as input and returns the denoised latents.
3. log_validation: A function that logs the validation information using the given VAE, image encoder,
network, scheduler, accelerator, width, height, and configuration.
4. train_stage1_process: A function that processes the training stage 1 using the given configuration.
The script also includes the necessary imports and a brief description of the purpose of the file.
"""
import argparse
import logging
import math
import os
import random
import warnings
from datetime import datetime
import cv2
import diffusers
import mlflow
import numpy as np
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
import transformers
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import DistributedDataParallelKwargs
from diffusers import AutoencoderKL, DDIMScheduler
from diffusers.optimization import get_scheduler
from diffusers.utils import check_min_version
from diffusers.utils.import_utils import is_xformers_available
from insightface.app import FaceAnalysis
from omegaconf import OmegaConf
from PIL import Image
from torch import nn
from tqdm.auto import tqdm
from hallo.animate.face_animate_static import StaticPipeline
from hallo.datasets.mask_image import FaceMaskDataset
from hallo.models.face_locator import FaceLocator
from hallo.models.image_proj import ImageProjModel
from hallo.models.mutual_self_attention import ReferenceAttentionControl
from hallo.models.unet_2d_condition import UNet2DConditionModel
from hallo.models.unet_3d import UNet3DConditionModel
from hallo.utils.util import (compute_snr, delete_additional_ckpt,
import_filename, init_output_dir,
load_checkpoint, move_final_checkpoint,
save_checkpoint, seed_everything)
warnings.filterwarnings("ignore")
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
check_min_version("0.10.0.dev0")
logger = get_logger(__name__, log_level="INFO")
class Net(nn.Module):
"""
The Net class defines a neural network model that combines a reference UNet2DConditionModel,
a denoising UNet3DConditionModel, a face locator, and other components to animate a face in a static image.
Args:
reference_unet (UNet2DConditionModel): The reference UNet2DConditionModel used for face animation.
denoising_unet (UNet3DConditionModel): The denoising UNet3DConditionModel used for face animation.
face_locator (FaceLocator): The face locator model used for face animation.
reference_control_writer: The reference control writer component.
reference_control_reader: The reference control reader component.
imageproj: The image projection model.
Forward method:
noisy_latents (torch.Tensor): The noisy latents tensor.
timesteps (torch.Tensor): The timesteps tensor.
ref_image_latents (torch.Tensor): The reference image latents tensor.
face_emb (torch.Tensor): The face embeddings tensor.
face_mask (torch.Tensor): The face mask tensor.
uncond_fwd (bool): A flag indicating whether to perform unconditional forward pass.
Returns:
torch.Tensor: The output tensor of the neural network model.
"""
def __init__(
self,
reference_unet: UNet2DConditionModel,
denoising_unet: UNet3DConditionModel,
face_locator: FaceLocator,
reference_control_writer: ReferenceAttentionControl,
reference_control_reader: ReferenceAttentionControl,
imageproj: ImageProjModel,
):
super().__init__()
self.reference_unet = reference_unet
self.denoising_unet = denoising_unet
self.face_locator = face_locator
self.reference_control_writer = reference_control_writer
self.reference_control_reader = reference_control_reader
self.imageproj = imageproj
def forward(
self,
noisy_latents,
timesteps,
ref_image_latents,
face_emb,
face_mask,
uncond_fwd: bool = False,
):
"""
Forward pass of the model.
Args:
self (Net): The model instance.
noisy_latents (torch.Tensor): Noisy latents.
timesteps (torch.Tensor): Timesteps.
ref_image_latents (torch.Tensor): Reference image latents.
face_emb (torch.Tensor): Face embedding.
face_mask (torch.Tensor): Face mask.
uncond_fwd (bool, optional): Unconditional forward pass. Defaults to False.
Returns:
torch.Tensor: Model prediction.
"""
face_emb = self.imageproj(face_emb)
face_mask = face_mask.to(device="cuda")
face_mask_feature = self.face_locator(face_mask)
if not uncond_fwd:
ref_timesteps = torch.zeros_like(timesteps)
self.reference_unet(
ref_image_latents,
ref_timesteps,
encoder_hidden_states=face_emb,
return_dict=False,
)
self.reference_control_reader.update(self.reference_control_writer)
model_pred = self.denoising_unet(
noisy_latents,
timesteps,
mask_cond_fea=face_mask_feature,
encoder_hidden_states=face_emb,
).sample
return model_pred
def get_noise_scheduler(cfg: argparse.Namespace):
"""
Create noise scheduler for training
Args:
cfg (omegaconf.dictconfig.DictConfig): Configuration object.
Returns:
train noise scheduler and val noise scheduler
"""
sched_kwargs = OmegaConf.to_container(cfg.noise_scheduler_kwargs)
if cfg.enable_zero_snr:
sched_kwargs.update(
rescale_betas_zero_snr=True,
timestep_spacing="trailing",
prediction_type="v_prediction",
)
val_noise_scheduler = DDIMScheduler(**sched_kwargs)
sched_kwargs.update({"beta_schedule": "scaled_linear"})
train_noise_scheduler = DDIMScheduler(**sched_kwargs)
return train_noise_scheduler, val_noise_scheduler
def log_validation(
vae,
net,
scheduler,
accelerator,
width,
height,
imageproj,
cfg,
save_dir,
global_step,
face_analysis_model_path,
):
"""
Log validation generation image.
Args:
vae (nn.Module): Variational Autoencoder model.
net (Net): Main model.
scheduler (diffusers.SchedulerMixin): Noise scheduler.
accelerator (accelerate.Accelerator): Accelerator for training.
width (int): Width of the input images.
height (int): Height of the input images.
imageproj (nn.Module): Image projection model.
cfg (omegaconf.dictconfig.DictConfig): Configuration object.
save_dir (str): directory path to save log result.
global_step (int): Global step number.
Returns:
None
"""
logger.info("Running validation... ")
ori_net = accelerator.unwrap_model(net)
reference_unet = ori_net.reference_unet
denoising_unet = ori_net.denoising_unet
face_locator = ori_net.face_locator
generator = torch.manual_seed(42)
image_enc = FaceAnalysis(
name="",
root=face_analysis_model_path,
providers=["CUDAExecutionProvider", "CPUExecutionProvider"],
)
image_enc.prepare(ctx_id=0, det_size=(640, 640))
pipe = StaticPipeline(
vae=vae,
reference_unet=reference_unet,
denoising_unet=denoising_unet,
face_locator=face_locator,
scheduler=scheduler,
imageproj=imageproj,
)
pil_images = []
for ref_image_path, mask_image_path in zip(cfg.ref_image_paths, cfg.mask_image_paths):
# for mask_image_path in mask_image_paths:
mask_name = os.path.splitext(
os.path.basename(mask_image_path))[0]
ref_name = os.path.splitext(
os.path.basename(ref_image_path))[0]
ref_image_pil = Image.open(ref_image_path).convert("RGB")
mask_image_pil = Image.open(mask_image_path).convert("RGB")
# Prepare face embeds
face_info = image_enc.get(
cv2.cvtColor(np.array(ref_image_pil), cv2.COLOR_RGB2BGR))
face_info = sorted(face_info, key=lambda x: (x['bbox'][2] - x['bbox'][0]) * (
x['bbox'][3] - x['bbox'][1]))[-1] # only use the maximum face
face_emb = torch.tensor(face_info['embedding'])
face_emb = face_emb.to(
imageproj.device, imageproj.dtype)
image = pipe(
ref_image_pil,
mask_image_pil,
width,
height,
20,
3.5,
face_emb,
generator=generator,
).images
image = image[0, :, 0].permute(1, 2, 0).cpu().numpy() # (3, 512, 512)
res_image_pil = Image.fromarray((image * 255).astype(np.uint8))
# Save ref_image, src_image and the generated_image
w, h = res_image_pil.size
canvas = Image.new("RGB", (w * 3, h), "white")
ref_image_pil = ref_image_pil.resize((w, h))
mask_image_pil = mask_image_pil.resize((w, h))
canvas.paste(ref_image_pil, (0, 0))
canvas.paste(mask_image_pil, (w, 0))
canvas.paste(res_image_pil, (w * 2, 0))
out_file = os.path.join(
save_dir, f"{global_step:06d}-{ref_name}_{mask_name}.jpg"
)
canvas.save(out_file)
del pipe
torch.cuda.empty_cache()
return pil_images
def train_stage1_process(cfg: argparse.Namespace) -> None:
"""
Trains the model using the given configuration (cfg).
Args:
cfg (dict): The configuration dictionary containing the parameters for training.
Notes:
- This function trains the model using the given configuration.
- It initializes the necessary components for training, such as the pipeline, optimizer, and scheduler.
- The training progress is logged and tracked using the accelerator.
- The trained model is saved after the training is completed.
"""
kwargs = DistributedDataParallelKwargs(find_unused_parameters=True)
accelerator = Accelerator(
gradient_accumulation_steps=cfg.solver.gradient_accumulation_steps,
mixed_precision=cfg.solver.mixed_precision,
log_with="mlflow",
project_dir="./mlruns",
kwargs_handlers=[kwargs],
)
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
logger.info(accelerator.state, main_process_only=False)
if accelerator.is_local_main_process:
transformers.utils.logging.set_verbosity_warning()
diffusers.utils.logging.set_verbosity_info()
else:
transformers.utils.logging.set_verbosity_error()
diffusers.utils.logging.set_verbosity_error()
# If passed along, set the training seed now.
if cfg.seed is not None:
seed_everything(cfg.seed)
# create output dir for training
exp_name = cfg.exp_name
save_dir = f"{cfg.output_dir}/{exp_name}"
checkpoint_dir = os.path.join(save_dir, "checkpoints")
module_dir = os.path.join(save_dir, "modules")
validation_dir = os.path.join(save_dir, "validation")
if accelerator.is_main_process:
init_output_dir([save_dir, checkpoint_dir, module_dir, validation_dir])
accelerator.wait_for_everyone()
# create model
if cfg.weight_dtype == "fp16":
weight_dtype = torch.float16
elif cfg.weight_dtype == "bf16":
weight_dtype = torch.bfloat16
elif cfg.weight_dtype == "fp32":
weight_dtype = torch.float32
else:
raise ValueError(
f"Do not support weight dtype: {cfg.weight_dtype} during training"
)
# create model
vae = AutoencoderKL.from_pretrained(cfg.vae_model_path).to(
"cuda", dtype=weight_dtype
)
reference_unet = UNet2DConditionModel.from_pretrained(
cfg.base_model_path,
subfolder="unet",
).to(device="cuda", dtype=weight_dtype)
denoising_unet = UNet3DConditionModel.from_pretrained_2d(
cfg.base_model_path,
"",
subfolder="unet",
unet_additional_kwargs={
"use_motion_module": False,
"unet_use_temporal_attention": False,
},
use_landmark=False
).to(device="cuda", dtype=weight_dtype)
imageproj = ImageProjModel(
cross_attention_dim=denoising_unet.config.cross_attention_dim,
clip_embeddings_dim=512,
clip_extra_context_tokens=4,
).to(device="cuda", dtype=weight_dtype)
if cfg.face_locator_pretrained:
face_locator = FaceLocator(
conditioning_embedding_channels=320, block_out_channels=(16, 32, 96, 256)
).to(device="cuda", dtype=weight_dtype)
miss, _ = face_locator.load_state_dict(
cfg.face_state_dict_path, strict=False)
logger.info(f"Missing key for face locator: {len(miss)}")
else:
face_locator = FaceLocator(
conditioning_embedding_channels=320,
).to(device="cuda", dtype=weight_dtype)
# Freeze
vae.requires_grad_(False)
denoising_unet.requires_grad_(True)
reference_unet.requires_grad_(True)
imageproj.requires_grad_(True)
face_locator.requires_grad_(True)
reference_control_writer = ReferenceAttentionControl(
reference_unet,
do_classifier_free_guidance=False,
mode="write",
fusion_blocks="full",
)
reference_control_reader = ReferenceAttentionControl(
denoising_unet,
do_classifier_free_guidance=False,
mode="read",
fusion_blocks="full",
)
net = Net(
reference_unet,
denoising_unet,
face_locator,
reference_control_writer,
reference_control_reader,
imageproj,
).to(dtype=weight_dtype)
# get noise scheduler
train_noise_scheduler, val_noise_scheduler = get_noise_scheduler(cfg)
# init optimizer
if cfg.solver.enable_xformers_memory_efficient_attention:
if is_xformers_available():
reference_unet.enable_xformers_memory_efficient_attention()
denoising_unet.enable_xformers_memory_efficient_attention()
else:
raise ValueError(
"xformers is not available. Make sure it is installed correctly"
)
if cfg.solver.gradient_checkpointing:
reference_unet.enable_gradient_checkpointing()
denoising_unet.enable_gradient_checkpointing()
if cfg.solver.scale_lr:
learning_rate = (
cfg.solver.learning_rate
* cfg.solver.gradient_accumulation_steps
* cfg.data.train_bs
* accelerator.num_processes
)
else:
learning_rate = cfg.solver.learning_rate
# Initialize the optimizer
if cfg.solver.use_8bit_adam:
try:
import bitsandbytes as bnb
except ImportError as exc:
raise ImportError(
"Please install bitsandbytes to use 8-bit Adam. You can do so by running `pip install bitsandbytes`"
) from exc
optimizer_cls = bnb.optim.AdamW8bit
else:
optimizer_cls = torch.optim.AdamW
trainable_params = list(
filter(lambda p: p.requires_grad, net.parameters()))
optimizer = optimizer_cls(
trainable_params,
lr=learning_rate,
betas=(cfg.solver.adam_beta1, cfg.solver.adam_beta2),
weight_decay=cfg.solver.adam_weight_decay,
eps=cfg.solver.adam_epsilon,
)
# init scheduler
lr_scheduler = get_scheduler(
cfg.solver.lr_scheduler,
optimizer=optimizer,
num_warmup_steps=cfg.solver.lr_warmup_steps
* cfg.solver.gradient_accumulation_steps,
num_training_steps=cfg.solver.max_train_steps
* cfg.solver.gradient_accumulation_steps,
)
# get data loader
train_dataset = FaceMaskDataset(
img_size=(cfg.data.train_width, cfg.data.train_height),
data_meta_paths=cfg.data.meta_paths,
sample_margin=cfg.data.sample_margin,
)
train_dataloader = torch.utils.data.DataLoader(
train_dataset, batch_size=cfg.data.train_bs, shuffle=True, num_workers=4
)
# Prepare everything with our `accelerator`.
(
net,
optimizer,
train_dataloader,
lr_scheduler,
) = accelerator.prepare(
net,
optimizer,
train_dataloader,
lr_scheduler,
)
# We need to recalculate our total training steps as the size of the training dataloader may have changed.
num_update_steps_per_epoch = math.ceil(
len(train_dataloader) / cfg.solver.gradient_accumulation_steps
)
# Afterwards we recalculate our number of training epochs
num_train_epochs = math.ceil(
cfg.solver.max_train_steps / num_update_steps_per_epoch
)
# We need to initialize the trackers we use, and also store our configuration.
# The trackers initializes automatically on the main process.
if accelerator.is_main_process:
run_time = datetime.now().strftime("%Y%m%d-%H%M")
accelerator.init_trackers(
cfg.exp_name,
init_kwargs={"mlflow": {"run_name": run_time}},
)
# dump config file
mlflow.log_dict(OmegaConf.to_container(cfg), "config.yaml")
logger.info(f"save config to {save_dir}")
OmegaConf.save(
cfg, os.path.join(save_dir, "config.yaml")
)
# Train!
total_batch_size = (
cfg.data.train_bs
* accelerator.num_processes
* cfg.solver.gradient_accumulation_steps
)
logger.info("***** Running training *****")
logger.info(f" Num examples = {len(train_dataset)}")
logger.info(f" Num Epochs = {num_train_epochs}")
logger.info(f" Instantaneous batch size per device = {cfg.data.train_bs}")
logger.info(
f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}"
)
logger.info(
f" Gradient Accumulation steps = {cfg.solver.gradient_accumulation_steps}"
)
logger.info(f" Total optimization steps = {cfg.solver.max_train_steps}")
global_step = 0
first_epoch = 0
# load checkpoint
# Potentially load in the weights and states from a previous save
if cfg.resume_from_checkpoint:
logger.info(f"Loading checkpoint from {checkpoint_dir}")
global_step = load_checkpoint(cfg, checkpoint_dir, accelerator)
first_epoch = global_step // num_update_steps_per_epoch
# Only show the progress bar once on each machine.
progress_bar = tqdm(
range(global_step, cfg.solver.max_train_steps),
disable=not accelerator.is_main_process,
)
progress_bar.set_description("Steps")
net.train()
for _ in range(first_epoch, num_train_epochs):
train_loss = 0.0
for _, batch in enumerate(train_dataloader):
with accelerator.accumulate(net):
# Convert videos to latent space
pixel_values = batch["img"].to(weight_dtype)
with torch.no_grad():
latents = vae.encode(pixel_values).latent_dist.sample()
latents = latents.unsqueeze(2) # (b, c, 1, h, w)
latents = latents * 0.18215
noise = torch.randn_like(latents)
if cfg.noise_offset > 0.0:
noise += cfg.noise_offset * torch.randn(
(noise.shape[0], noise.shape[1], 1, 1, 1),
device=noise.device,
)
bsz = latents.shape[0]
# Sample a random timestep for each video
timesteps = torch.randint(
0,
train_noise_scheduler.num_train_timesteps,
(bsz,),
device=latents.device,
)
timesteps = timesteps.long()
face_mask_img = batch["tgt_mask"]
face_mask_img = face_mask_img.unsqueeze(
2)
face_mask_img = face_mask_img.to(weight_dtype)
uncond_fwd = random.random() < cfg.uncond_ratio
face_emb_list = []
ref_image_list = []
for _, (ref_img, face_emb) in enumerate(
zip(batch["ref_img"], batch["face_emb"])
):
if uncond_fwd:
face_emb_list.append(torch.zeros_like(face_emb))
else:
face_emb_list.append(face_emb)
ref_image_list.append(ref_img)
with torch.no_grad():
ref_img = torch.stack(ref_image_list, dim=0).to(
dtype=vae.dtype, device=vae.device
)
ref_image_latents = vae.encode(
ref_img
).latent_dist.sample()
ref_image_latents = ref_image_latents * 0.18215
face_emb = torch.stack(face_emb_list, dim=0).to(
dtype=imageproj.dtype, device=imageproj.device
)
# add noise
noisy_latents = train_noise_scheduler.add_noise(
latents, noise, timesteps
)
# Get the target for loss depending on the prediction type
if train_noise_scheduler.prediction_type == "epsilon":
target = noise
elif train_noise_scheduler.prediction_type == "v_prediction":
target = train_noise_scheduler.get_velocity(
latents, noise, timesteps
)
else:
raise ValueError(
f"Unknown prediction type {train_noise_scheduler.prediction_type}"
)
model_pred = net(
noisy_latents,
timesteps,
ref_image_latents,
face_emb,
face_mask_img,
uncond_fwd,
)
if cfg.snr_gamma == 0:
loss = F.mse_loss(
model_pred.float(), target.float(), reduction="mean"
)
else:
snr = compute_snr(train_noise_scheduler, timesteps)
if train_noise_scheduler.config.prediction_type == "v_prediction":
# Velocity objective requires that we add one to SNR values before we divide by them.
snr = snr + 1
mse_loss_weights = (
torch.stack(
[snr, cfg.snr_gamma * torch.ones_like(timesteps)], dim=1
).min(dim=1)[0]
/ snr
)
loss = F.mse_loss(
model_pred.float(), target.float(), reduction="none"
)
loss = (
loss.mean(dim=list(range(1, len(loss.shape))))
* mse_loss_weights
)
loss = loss.mean()
# Gather the losses across all processes for logging (if we use distributed training).
avg_loss = accelerator.gather(
loss.repeat(cfg.data.train_bs)).mean()
train_loss += avg_loss.item() / cfg.solver.gradient_accumulation_steps
# Backpropagate
accelerator.backward(loss)
if accelerator.sync_gradients:
accelerator.clip_grad_norm_(
trainable_params,
cfg.solver.max_grad_norm,
)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
if accelerator.sync_gradients:
reference_control_reader.clear()
reference_control_writer.clear()
progress_bar.update(1)
global_step += 1
accelerator.log({"train_loss": train_loss}, step=global_step)
train_loss = 0.0
if global_step % cfg.checkpointing_steps == 0 or global_step == cfg.solver.max_train_steps:
accelerator.wait_for_everyone()
save_path = os.path.join(
checkpoint_dir, f"checkpoint-{global_step}")
if accelerator.is_main_process:
delete_additional_ckpt(checkpoint_dir, 3)
accelerator.save_state(save_path)
accelerator.wait_for_everyone()
unwrap_net = accelerator.unwrap_model(net)
if accelerator.is_main_process:
save_checkpoint(
unwrap_net.reference_unet,
module_dir,
"reference_unet",
global_step,
total_limit=3,
)
save_checkpoint(
unwrap_net.imageproj,
module_dir,
"imageproj",
global_step,
total_limit=3,
)
save_checkpoint(
unwrap_net.denoising_unet,
module_dir,
"denoising_unet",
global_step,
total_limit=3,
)
save_checkpoint(
unwrap_net.face_locator,
module_dir,
"face_locator",
global_step,
total_limit=3,
)
if global_step % cfg.val.validation_steps == 0 or global_step == 1:
if accelerator.is_main_process:
generator = torch.Generator(device=accelerator.device)
generator.manual_seed(cfg.seed)
log_validation(
vae=vae,
net=net,
scheduler=val_noise_scheduler,
accelerator=accelerator,
width=cfg.data.train_width,
height=cfg.data.train_height,
imageproj=imageproj,
cfg=cfg,
save_dir=validation_dir,
global_step=global_step,
face_analysis_model_path=cfg.face_analysis_model_path
)
logs = {
"step_loss": loss.detach().item(),
"lr": lr_scheduler.get_last_lr()[0],
}
progress_bar.set_postfix(**logs)
if global_step >= cfg.solver.max_train_steps:
# process final module weight for stage2
if accelerator.is_main_process:
move_final_checkpoint(save_dir, module_dir, "reference_unet")
move_final_checkpoint(save_dir, module_dir, "imageproj")
move_final_checkpoint(save_dir, module_dir, "denoising_unet")
move_final_checkpoint(save_dir, module_dir, "face_locator")
break
accelerator.wait_for_everyone()
accelerator.end_training()
def load_config(config_path: str) -> dict:
"""
Loads the configuration file.
Args:
config_path (str): Path to the configuration file.
Returns:
dict: The configuration dictionary.
"""
if config_path.endswith(".yaml"):
return OmegaConf.load(config_path)
if config_path.endswith(".py"):
return import_filename(config_path).cfg
raise ValueError("Unsupported format for config file")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--config", type=str,
default="./configs/train/stage1.yaml")
args = parser.parse_args()
try:
config = load_config(args.config)
train_stage1_process(config)
except Exception as e:
logging.error("Failed to execute the training process: %s", e)