forked from RobotLocomotion/drake
-
Notifications
You must be signed in to change notification settings - Fork 0
/
autodiff_overloads.h
203 lines (178 loc) · 6.77 KB
/
autodiff_overloads.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
/// @file
/// Overloads for STL mathematical operations on AutoDiffScalar.
///
/// Used via argument-dependent lookup (ADL). These functions appear
/// in the Eigen namespace so that ADL can automatically choose between
/// the STL version and the overloaded version to match the type of the
/// arguments. The proper use would be e.g.
///
/// \code{.cc}
/// void mymethod() {
/// using std::isinf;
/// isinf(myval);
/// }
/// \endcode{}
///
/// @note The if_then_else and cond functions for AutoDiffScalar are in
/// namespace drake because cond is defined in namespace drake in
/// "drake/common/cond.h" file.
#pragma once
#ifndef DRAKE_COMMON_AUTODIFF_HEADER
// TODO(soonho-tri): Change to #error.
#warning Do not directly include this file. Include "drake/common/autodiff.h".
#endif
#include <cmath>
#include <limits>
#include "drake/common/cond.h"
#include "drake/common/drake_assert.h"
#include "drake/common/dummy_value.h"
namespace Eigen {
/// Overloads nexttoward to mimic std::nexttoward from <cmath>.
template <typename DerType>
double nexttoward(const Eigen::AutoDiffScalar<DerType>& from, long double to) {
using std::nexttoward;
return nexttoward(from.value(), to);
}
/// Overloads round to mimic std::round from <cmath>.
template <typename DerType>
double round(const Eigen::AutoDiffScalar<DerType>& x) {
using std::round;
return round(x.value());
}
/// Overloads isinf to mimic std::isinf from <cmath>.
template <typename DerType>
bool isinf(const Eigen::AutoDiffScalar<DerType>& x) {
using std::isinf;
return isinf(x.value());
}
/// Overloads isfinite to mimic std::isfinite from <cmath>.
template <typename DerType>
bool isfinite(const Eigen::AutoDiffScalar<DerType>& x) {
using std::isfinite;
return isfinite(x.value());
}
/// Overloads isnan to mimic std::isnan from <cmath>.
template <typename DerType>
bool isnan(const Eigen::AutoDiffScalar<DerType>& x) {
using std::isnan;
return isnan(x.value());
}
/// Overloads floor to mimic std::floor from <cmath>.
template <typename DerType>
double floor(const Eigen::AutoDiffScalar<DerType>& x) {
using std::floor;
return floor(x.value());
}
/// Overloads ceil to mimic std::ceil from <cmath>.
template <typename DerType>
double ceil(const Eigen::AutoDiffScalar<DerType>& x) {
using std::ceil;
return ceil(x.value());
}
/// Overloads copysign from <cmath>.
template <typename DerType, typename T>
Eigen::AutoDiffScalar<DerType> copysign(const Eigen::AutoDiffScalar<DerType>& x,
const T& y) {
using std::isnan;
if (isnan(x)) return (y >= 0) ? NAN : -NAN;
if ((x < 0 && y >= 0) || (x >= 0 && y < 0))
return -x;
else
return x;
}
/// Overloads copysign from <cmath>.
template <typename DerType>
double copysign(double x, const Eigen::AutoDiffScalar<DerType>& y) {
using std::isnan;
if (isnan(x)) return (y >= 0) ? NAN : -NAN;
if ((x < 0 && y >= 0) || (x >= 0 && y < 0))
return -x;
else
return x;
}
/// Overloads pow for an AutoDiffScalar base and exponent, implementing the
/// chain rule.
template <typename DerTypeA, typename DerTypeB>
Eigen::AutoDiffScalar<
typename internal::remove_all<DerTypeA>::type::PlainObject>
pow(const Eigen::AutoDiffScalar<DerTypeA>& base,
const Eigen::AutoDiffScalar<DerTypeB>& exponent) {
// The two AutoDiffScalars being exponentiated must have the same matrix
// type. This includes, but is not limited to, the same scalar type and
// the same dimension.
static_assert(
std::is_same<
typename internal::remove_all<DerTypeA>::type::PlainObject,
typename internal::remove_all<DerTypeB>::type::PlainObject>::value,
"The derivative types must match.");
internal::make_coherent(base.derivatives(), exponent.derivatives());
const auto& x = base.value();
const auto& xgrad = base.derivatives();
const auto& y = exponent.value();
const auto& ygrad = exponent.derivatives();
using std::pow;
using std::log;
const auto x_to_the_y = pow(x, y);
if (ygrad.isZero(std::numeric_limits<double>::epsilon()) ||
ygrad.size() == 0) {
// The derivative only depends on ∂(x^y)/∂x -- this prevents undefined
// behavior in the corner case where ∂(x^y)/∂y is infinite when x = 0,
// despite ∂y/∂v being 0.
return Eigen::MakeAutoDiffScalar(x_to_the_y, y * pow(x, y - 1) * xgrad);
}
return Eigen::MakeAutoDiffScalar(
// The value is x ^ y.
x_to_the_y,
// The multivariable chain rule states:
// df/dv_i = (∂f/∂x * dx/dv_i) + (∂f/∂y * dy/dv_i)
// ∂f/∂x is y*x^(y-1)
y * pow(x, y - 1) * xgrad +
// ∂f/∂y is (x^y)*ln(x)
x_to_the_y * log(x) * ygrad);
}
} // namespace Eigen
namespace drake {
/// Returns the autodiff scalar's value() as a double. Never throws.
/// Overloads ExtractDoubleOrThrow from common/extract_double.h.
template <typename DerType>
double ExtractDoubleOrThrow(const Eigen::AutoDiffScalar<DerType>& scalar) {
return static_cast<double>(scalar.value());
}
/// Specializes common/dummy_value.h.
template <typename DerType>
struct dummy_value<Eigen::AutoDiffScalar<DerType>> {
static constexpr Eigen::AutoDiffScalar<DerType> get() {
constexpr double kNaN = std::numeric_limits<double>::quiet_NaN();
DerType derivatives;
derivatives.fill(kNaN);
return Eigen::AutoDiffScalar<DerType>(kNaN, derivatives);
}
};
/// Provides if-then-else expression for Eigen::AutoDiffScalar type. To support
/// Eigen's generic expressions, we use casting to the plain object after
/// applying Eigen::internal::remove_all. It is based on the Eigen's
/// implementation of min/max function for AutoDiffScalar type
/// (https://bitbucket.org/eigen/eigen/src/10a1de58614569c9250df88bdfc6402024687bc6/unsupported/Eigen/src/AutoDiff/AutoDiffScalar.h?at=default&fileviewer=file-view-default#AutoDiffScalar.h-546).
template <typename DerType1, typename DerType2>
inline Eigen::AutoDiffScalar<
typename Eigen::internal::remove_all<DerType1>::type::PlainObject>
if_then_else(bool f_cond, const Eigen::AutoDiffScalar<DerType1>& x,
const Eigen::AutoDiffScalar<DerType2>& y) {
typedef Eigen::AutoDiffScalar<
typename Eigen::internal::remove_all<DerType1>::type::PlainObject>
ADS1;
typedef Eigen::AutoDiffScalar<
typename Eigen::internal::remove_all<DerType2>::type::PlainObject>
ADS2;
static_assert(std::is_same<ADS1, ADS2>::value,
"The derivative types must match.");
return f_cond ? ADS1(x) : ADS2(y);
}
/// Provides special case of cond expression for Eigen::AutoDiffScalar type.
template <typename DerType, typename... Rest>
Eigen::AutoDiffScalar<
typename Eigen::internal::remove_all<DerType>::type::PlainObject>
cond(bool f_cond, const Eigen::AutoDiffScalar<DerType>& e_then, Rest... rest) {
return if_then_else(f_cond, e_then, cond(rest...));
}
} // namespace drake