forked from RobotLocomotion/drake
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathend_effector_teleop_sliders.py
300 lines (257 loc) · 11.9 KB
/
end_effector_teleop_sliders.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
import argparse
try:
import tkinter as tk
except ImportError:
import Tkinter as tk
import numpy as np
from pydrake.examples.manipulation_station import (
ManipulationStation, ManipulationStationHardwareInterface,
CreateDefaultYcbObjectList)
from pydrake.geometry import ConnectDrakeVisualizer
from pydrake.multibody.plant import MultibodyPlant
from pydrake.manipulation.simple_ui import SchunkWsgButtons
from pydrake.manipulation.planner import (
DifferentialInverseKinematicsParameters)
from pydrake.multibody.parsing import Parser
from pydrake.math import RigidTransform, RollPitchYaw
from pydrake.systems.analysis import Simulator
from pydrake.systems.framework import (BasicVector, DiagramBuilder,
LeafSystem)
from pydrake.systems.lcm import LcmPublisherSystem
from pydrake.systems.meshcat_visualizer import MeshcatVisualizer
from pydrake.systems.primitives import FirstOrderLowPassFilter
from pydrake.systems.sensors import ImageToLcmImageArrayT, PixelType
from pydrake.common.eigen_geometry import Isometry3
from drake.examples.manipulation_station.differential_ik import DifferentialIK
from robotlocomotion import image_array_t
# TODO(russt): Generalize this and move it to pydrake.manipulation.simple_ui.
class EndEffectorTeleop(LeafSystem):
def __init__(self):
LeafSystem.__init__(self)
self._DeclareVectorOutputPort("rpy_xyz", BasicVector(6),
self._DoCalcOutput)
# Note: This timing affects the keyboard teleop performance. A larger
# time step causes more lag in the response.
self._DeclarePeriodicPublish(0.01, 0.0)
self.window = tk.Tk()
self.window.title("End-Effector TeleOp")
self.roll = tk.Scale(self.window, from_=-2 * np.pi, to=2 * np.pi,
resolution=-1,
label="roll",
length=800,
orient=tk.HORIZONTAL)
self.roll.pack()
self.pitch = tk.Scale(self.window, from_=-2 * np.pi, to=2 * np.pi,
resolution=-1,
label="pitch",
length=800,
orient=tk.HORIZONTAL)
self.pitch.pack()
self.yaw = tk.Scale(self.window, from_=-2 * np.pi, to=2 * np.pi,
resolution=-1,
label="yaw",
length=800,
orient=tk.HORIZONTAL)
self.yaw.pack()
self.x = tk.Scale(self.window, from_=-0.6, to=0.8,
resolution=-1,
label="x",
length=800,
orient=tk.HORIZONTAL)
self.x.pack()
self.y = tk.Scale(self.window, from_=-0.8, to=0.3,
resolution=-1,
label="y",
length=800,
orient=tk.HORIZONTAL)
self.y.pack()
self.z = tk.Scale(self.window, from_=0, to=1.1,
resolution=-1,
label="z",
length=800,
orient=tk.HORIZONTAL)
self.z.pack()
# The key bindings below provide teleop functionality via the
# keyboard, and are somewhat arbitrary (inspired by gaming
# conventions). Note that in order for the keyboard bindings to
# be active, the teleop slider window must be the active window.
def update(scale, value):
return lambda event: scale.set(scale.get() + value)
# Delta displacements for motion via keyboard teleop.
rotation_delta = 0.05 # rad
position_delta = 0.01 # m
# Linear motion key bindings.
self.window.bind("<Up>", update(self.z, +position_delta))
self.window.bind("<Down>", update(self.z, -position_delta))
self.window.bind("<d>", update(self.y, +position_delta))
self.window.bind("<a>", update(self.y, -position_delta))
self.window.bind("<w>", update(self.x, +position_delta))
self.window.bind("<s>", update(self.x, -position_delta))
# Rotational motion key bindings.
self.window.bind("<Control-d>", update(self.pitch, +rotation_delta))
self.window.bind("<Control-a>", update(self.pitch, -rotation_delta))
self.window.bind("<Control-w>", update(self.roll, +rotation_delta))
self.window.bind("<Control-s>", update(self.roll, -rotation_delta))
self.window.bind("<Control-Up>", update(self.yaw, +rotation_delta))
self.window.bind("<Control-Down>", update(self.yaw, -rotation_delta))
def SetPose(self, pose):
"""
@param pose is an Isometry3.
"""
tf = RigidTransform(pose)
self.SetRPY(RollPitchYaw(tf.rotation()))
self.SetXYZ(pose.translation())
def SetRPY(self, rpy):
"""
@param rpy is a RollPitchYaw object
"""
self.roll.set(rpy.roll_angle())
self.pitch.set(rpy.pitch_angle())
self.yaw.set(rpy.yaw_angle())
def SetXYZ(self, xyz):
"""
@param xyz is a 3 element vector of x, y, z.
"""
self.x.set(xyz[0])
self.y.set(xyz[1])
self.z.set(xyz[2])
def _DoPublish(self, context, event):
self.window.update_idletasks()
self.window.update()
def _DoCalcOutput(self, context, output):
output.SetAtIndex(0, self.roll.get())
output.SetAtIndex(1, self.pitch.get())
output.SetAtIndex(2, self.yaw.get())
output.SetAtIndex(3, self.x.get())
output.SetAtIndex(4, self.y.get())
output.SetAtIndex(5, self.z.get())
parser = argparse.ArgumentParser(description=__doc__)
parser.add_argument(
"--target_realtime_rate", type=float, default=1.0,
help="Desired rate relative to real time. See documentation for "
"Simulator::set_target_realtime_rate() for details.")
parser.add_argument(
"--duration", type=float, default=np.inf,
help="Desired duration of the simulation in seconds.")
parser.add_argument(
"--hardware", action='store_true',
help="Use the ManipulationStationHardwareInterface instead of an "
"in-process simulation.")
parser.add_argument(
"--test", action='store_true',
help="Disable opening the gui window for testing.")
parser.add_argument(
"--filter_time_const", type=float, default=0.1,
help="Time constant for the first order low pass filter applied to"
"the teleop commands")
parser.add_argument(
"--velocity_limit_factor", type=float, default=1.0,
help="This value, typically between 0 and 1, further limits the iiwa14 "
"joint velocities. It multiplies each of the seven pre-defined "
"joint velocity limits. "
"Note: The pre-defined velocity limits are specified by "
"iiwa14_velocity_limits, found in this python file.")
parser.add_argument(
'--setup', type=str, default='default',
help="The manipulation station setup to simulate. ",
choices=['default', 'clutter_clearing'])
MeshcatVisualizer.add_argparse_argument(parser)
args = parser.parse_args()
builder = DiagramBuilder()
if args.hardware:
station = builder.AddSystem(ManipulationStationHardwareInterface())
station.Connect(wait_for_cameras=False)
else:
station = builder.AddSystem(ManipulationStation())
# Initializes the chosen station type.
if args.setup == 'default':
station.SetupDefaultStation()
elif args.setup == 'clutter_clearing':
station.SetupClutterClearingStation()
ycb_objects = CreateDefaultYcbObjectList()
for model_file, X_WObject in ycb_objects:
station.AddManipulandFromFile(model_file, X_WObject)
station.Finalize()
# If using meshcat, don't render the cameras, since RgbdCamera rendering
# only works with drake-visualizer. Without this check, running this code
# in a docker container produces libGL errors.
if args.meshcat:
meshcat = builder.AddSystem(MeshcatVisualizer(
station.get_scene_graph(), zmq_url=args.meshcat,
open_browser=args.open_browser))
builder.Connect(station.GetOutputPort("pose_bundle"),
meshcat.get_input_port(0))
else:
ConnectDrakeVisualizer(builder, station.get_scene_graph(),
station.GetOutputPort("pose_bundle"))
image_to_lcm_image_array = builder.AddSystem(ImageToLcmImageArrayT())
image_to_lcm_image_array.set_name("converter")
for name in station.get_camera_names():
cam_port = (
image_to_lcm_image_array
.DeclareImageInputPort[PixelType.kRgba8U]("camera_" + name))
builder.Connect(
station.GetOutputPort("camera_" + name + "_rgb_image"),
cam_port)
image_array_lcm_publisher = builder.AddSystem(
LcmPublisherSystem.Make(
channel="DRAKE_RGBD_CAMERA_IMAGES",
lcm_type=image_array_t,
lcm=None,
publish_period=0.1,
use_cpp_serializer=True))
image_array_lcm_publisher.set_name("rgbd_publisher")
builder.Connect(
image_to_lcm_image_array.image_array_t_msg_output_port(),
image_array_lcm_publisher.get_input_port(0))
robot = station.get_controller_plant()
params = DifferentialInverseKinematicsParameters(robot.num_positions(),
robot.num_velocities())
time_step = 0.005
params.set_timestep(time_step)
# True velocity limits for the IIWA14 (in rad, rounded down to the first
# decimal)
iiwa14_velocity_limits = np.array([1.4, 1.4, 1.7, 1.3, 2.2, 2.3, 2.3])
# Stay within a small fraction of those limits for this teleop demo.
factor = args.velocity_limit_factor
params.set_joint_velocity_limits((-factor*iiwa14_velocity_limits,
factor*iiwa14_velocity_limits))
differential_ik = builder.AddSystem(DifferentialIK(
robot, robot.GetFrameByName("iiwa_link_7"), params, time_step))
builder.Connect(differential_ik.GetOutputPort("joint_position_desired"),
station.GetInputPort("iiwa_position"))
teleop = builder.AddSystem(EndEffectorTeleop())
if args.test:
teleop.window.withdraw() # Don't display the window when testing.
filter = builder.AddSystem(
FirstOrderLowPassFilter(time_constant=args.filter_time_const, size=6))
builder.Connect(teleop.get_output_port(0), filter.get_input_port(0))
builder.Connect(filter.get_output_port(0),
differential_ik.GetInputPort("rpy_xyz_desired"))
wsg_buttons = builder.AddSystem(SchunkWsgButtons(teleop.window))
builder.Connect(wsg_buttons.GetOutputPort("position"), station.GetInputPort(
"wsg_position"))
builder.Connect(wsg_buttons.GetOutputPort("force_limit"),
station.GetInputPort("wsg_force_limit"))
diagram = builder.Build()
simulator = Simulator(diagram)
# This is important to avoid duplicate publishes to the hardware interface:
simulator.set_publish_every_time_step(False)
station_context = diagram.GetMutableSubsystemContext(
station, simulator.get_mutable_context())
station_context.FixInputPort(station.GetInputPort(
"iiwa_feedforward_torque").get_index(), np.zeros(7))
simulator.AdvanceTo(1e-6)
q0 = station.GetOutputPort("iiwa_position_measured").Eval(
station_context)
differential_ik.parameters.set_nominal_joint_position(q0)
teleop.SetPose(differential_ik.ForwardKinematics(q0))
filter.set_initial_output_value(
diagram.GetMutableSubsystemContext(
filter, simulator.get_mutable_context()),
teleop.get_output_port(0).Eval(diagram.GetMutableSubsystemContext(
teleop, simulator.get_mutable_context())))
differential_ik.SetPositions(diagram.GetMutableSubsystemContext(
differential_ik, simulator.get_mutable_context()), q0)
simulator.set_target_realtime_rate(args.target_realtime_rate)
simulator.AdvanceTo(args.duration)