forked from aylei/leetcode-rust
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathn0062_unique_paths.rs
77 lines (71 loc) · 2.14 KB
/
n0062_unique_paths.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
/**
* [62] Unique Paths
*
* A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).
*
* The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).
*
* How many possible unique paths are there?
*
* <img src="https://assets.leetcode.com/uploads/2018/10/22/robot_maze.png" style="width: 400px; height: 183px;" /><br />
* <small>Above is a 7 x 3 grid. How many possible unique paths are there?</small>
*
* Note: m and n will be at most 100.
*
* Example 1:
*
*
* Input: m = 3, n = 2
* Output: 3
* Explanation:
* From the top-left corner, there are a total of 3 ways to reach the bottom-right corner:
* 1. Right -> Right -> Down
* 2. Right -> Down -> Right
* 3. Down -> Right -> Right
*
*
* Example 2:
*
*
* Input: m = 7, n = 3
* Output: 28
*
*/
pub struct Solution {}
// submission codes start here
// its high school math: C(r,n) = n! / r!(n-r)! ...are you fxxking kidding me?
// ...high school math will attempt to i32 overflow, we have to do it clever
impl Solution {
pub fn unique_paths(m: i32, n: i32) -> i32 {
let (m, n) = ((m - 1) as u64, (n - 1) as u64);
let sum = m + n;
(Solution::partial_factorial(u64::max(m, n), sum)
/ Solution::partial_factorial(0, u64::min(m, n))) as i32
}
#[inline(always)]
pub fn partial_factorial(start: u64, mut end: u64) -> u64 {
if start > end {
unreachable!()
}
let mut res = 1;
while end > start {
println!("{}", end);
res *= end;
end -= 1;
}
res
}
}
// submission codes end
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_62() {
assert_eq!(Solution::unique_paths(7, 3), 28);
assert_eq!(Solution::unique_paths(3, 7), 28);
assert_eq!(Solution::unique_paths(1, 1), 1);
assert_eq!(Solution::unique_paths(2, 2), 2);
assert_eq!(Solution::unique_paths(36, 7), 4496388);
}
}