forked from pdollar/toolbox
-
Notifications
You must be signed in to change notification settings - Fork 0
/
pdist2.m
183 lines (171 loc) · 5.04 KB
/
pdist2.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
function D = pdist2( X, Y, metric )
% Calculates the distance between sets of vectors.
%
% Let X be an m-by-p matrix representing m points in p-dimensional space
% and Y be an n-by-p matrix representing another set of points in the same
% space. This function computes the m-by-n distance matrix D where D(i,j)
% is the distance between X(i,:) and Y(j,:). This function has been
% optimized where possible, with most of the distance computations
% requiring few or no loops.
%
% The metric can be one of the following:
%
% 'euclidean' / 'sqeuclidean':
% Euclidean / SQUARED Euclidean distance. Note that 'sqeuclidean'
% is significantly faster.
%
% 'chisq'
% The chi-squared distance between two vectors is defined as:
% d(x,y) = sum( (xi-yi)^2 / (xi+yi) ) / 2;
% The chi-squared distance is useful when comparing histograms.
%
% 'cosine'
% Distance is defined as the cosine of the angle between two vectors.
%
% 'emd'
% Earth Mover's Distance (EMD) between positive vectors (histograms).
% Note for 1D, with all histograms having equal weight, there is a simple
% closed form for the calculation of the EMD. The EMD between histograms
% x and y is given by the sum(abs(cdf(x)-cdf(y))), where cdf is the
% cumulative distribution function (computed simply by cumsum).
%
% 'L1'
% The L1 distance between two vectors is defined as: sum(abs(x-y));
%
%
% USAGE
% D = pdist2( X, Y, [metric] )
%
% INPUTS
% X - [m x p] matrix of m p-dimensional vectors
% Y - [n x p] matrix of n p-dimensional vectors
% metric - ['sqeuclidean'], 'chisq', 'cosine', 'emd', 'euclidean', 'L1'
%
% OUTPUTS
% D - [m x n] distance matrix
%
% EXAMPLE
% % simple example where points cluster well
% [X,IDX] = demoGenData(100,0,5,4,10,2,0);
% D = pdist2( X, X, 'sqeuclidean' );
% distMatrixShow( D, IDX );
% % comparison to pdist
% n=500; d=200; r=100; X=rand(n,d);
% tic, for i=1:r, D1 = pdist( X, 'euclidean' ); end, toc
% tic, for i=1:r, D2 = pdist2( X, X, 'euclidean' ); end, toc
% D1=squareform(D1); del=D1-D2; sum(abs(del(:)))
%
% See also pdist, distMatrixShow
%
% Piotr's Computer Vision Matlab Toolbox Version 2.52
% Copyright 2014 Piotr Dollar. [pdollar-at-gmail.com]
% Licensed under the Simplified BSD License [see external/bsd.txt]
if( nargin<3 || isempty(metric) ); metric=0; end;
switch metric
case {0,'sqeuclidean'}
D = distEucSq( X, Y );
case 'euclidean'
D = sqrt(distEucSq( X, Y ));
case 'L1'
D = distL1( X, Y );
case 'cosine'
D = distCosine( X, Y );
case 'emd'
D = distEmd( X, Y );
case 'chisq'
D = distChiSq( X, Y );
otherwise
error(['pdist2 - unknown metric: ' metric]);
end
D = max(0,D);
end
function D = distL1( X, Y )
m = size(X,1); n = size(Y,1);
mOnes = ones(1,m); D = zeros(m,n);
for i=1:n
yi = Y(i,:); yi = yi( mOnes, : );
D(:,i) = sum( abs( X-yi),2 );
end
end
function D = distCosine( X, Y )
p=size(X,2);
XX = sqrt(sum(X.*X,2)); X = X ./ XX(:,ones(1,p));
YY = sqrt(sum(Y.*Y,2)); Y = Y ./ YY(:,ones(1,p));
D = 1 - X*Y';
end
function D = distEmd( X, Y )
Xcdf = cumsum(X,2);
Ycdf = cumsum(Y,2);
m = size(X,1); n = size(Y,1);
mOnes = ones(1,m); D = zeros(m,n);
for i=1:n
ycdf = Ycdf(i,:);
ycdfRep = ycdf( mOnes, : );
D(:,i) = sum(abs(Xcdf - ycdfRep),2);
end
end
function D = distChiSq( X, Y )
% note: supposedly it's possible to implement this without a loop!
m = size(X,1); n = size(Y,1);
mOnes = ones(1,m); D = zeros(m,n);
for i=1:n
yi = Y(i,:); yiRep = yi( mOnes, : );
s = yiRep + X; d = yiRep - X;
D(:,i) = sum( d.^2 ./ (s+eps), 2 );
end
D = D/2;
end
function D = distEucSq( X, Y )
Yt = Y';
XX = sum(X.*X,2);
YY = sum(Yt.*Yt,1);
D = bsxfun(@plus,XX,YY)-2*X*Yt;
end
%%%% code from Charles Elkan with variables renamed
% function D = distEucSq( X, Y )
% m = size(X,1); n = size(Y,1);
% D = sum(X.^2, 2) * ones(1,n) + ones(m,1) * sum(Y.^2, 2)' - 2.*X*Y';
% end
%%% LOOP METHOD - SLOW
% [m p] = size(X);
% [n p] = size(Y);
% D = zeros(m,n);
% onesM = ones(m,1);
% for i=1:n
% y = Y(i,:);
% d = X - y(onesM,:);
% D(:,i) = sum( d.*d, 2 );
% end
%%% PARALLEL METHOD THAT IS SUPER SLOW (slower than loop)!
% % From "MATLAB array manipulation tips and tricks" by Peter J. Acklam
% Xb = permute(X, [1 3 2]);
% Yb = permute(Y, [3 1 2]);
% D = sum( (Xb(:,ones(1,n),:) - Yb(ones(1,m),:,:)).^2, 3);
%%% USELESS FOR EVEN VERY LARGE ARRAYS X=16000x1000!! and Y=100x1000
% call recursively to save memory
% if( (m+n)*p > 10^5 && (m>1 || n>1))
% if( m>n )
% X1 = X(1:floor(end/2),:);
% X2 = X((floor(end/2)+1):end,:);
% D1 = distEucSq( X1, Y );
% D2 = distEucSq( X2, Y );
% D = cat( 1, D1, D2 );
% else
% Y1 = Y(1:floor(end/2),:);
% Y2 = Y((floor(end/2)+1):end,:);
% D1 = distEucSq( X, Y1 );
% D2 = distEucSq( X, Y2 );
% D = cat( 2, D1, D2 );
% end
% return;
% end
%%% L1 COMPUTATION WITH LOOP OVER p, FAST FOR SMALL p.
% function D = distL1( X, Y )
%
% m = size(X,1); n = size(Y,1); p = size(X,2);
% mOnes = ones(1,m); nOnes = ones(1,n); D = zeros(m,n);
% for i=1:p
% yi = Y(:,i); yi = yi( :, mOnes );
% xi = X(:,i); xi = xi( :, nOnes );
% D = D + abs( xi-yi' );
% end