-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathrecsys.py
323 lines (272 loc) · 15 KB
/
recsys.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
import pickle as pkl
from numpy.core.fromnumeric import sort
import torch
import numpy as np
from numpy.random import RandomState
import argparse
import os
import time
import datetime
import yaml
import faiss
from logging import getLogger
from tqdm.std import tqdm
from recbole.utils import set_color, init_seed
from utils.log import dict2str, combo_dict
from warmup import get_model
from utils.yaml_loader import get_yaml_loader
from dataset import UserSet, ItemSet
from dataloader import Dataloader
from utils.evaluations import TopKMetric, PointMetric
class RecSys(object):
def __init__(self, model_configs, dataset_config, joint_train_config, save_model_dir = './saved_models/ind', load_models = True):
self.model_configs = model_configs
self.dataset_config = dataset_config
self.joint_train_config = joint_train_config
self.save_model_dir = save_model_dir
self.item_set = ItemSet(dataset_config).get_item_set()
self.batch_size = self.joint_train_config['eval_batch_size']
self.rec_sizes = self.joint_train_config['rec_sizes']
self.score_sizes = self.joint_train_config['score_sizes']
self.topk_dict = self.joint_train_config['topk_dict']
self.stage_names = self.joint_train_config['stage_names']
self.eval_modes = self.joint_train_config['eval_modes']
self.involve_bid = self.joint_train_config['involve_bid']
self.logger = getLogger()
self.device = torch.device(joint_train_config['device'])
self.load_models = load_models
if self.joint_train_config['have_hist']:
with open(self.joint_train_config['hist_dict'] + 'train.pkl', 'rb') as f:
self.hist_dict_train = pkl.load(f)
with open(self.joint_train_config['hist_dict'] + 'test.pkl', 'rb') as f:
self.hist_dict_test = pkl.load(f)
with open(self.joint_train_config['hist_len_dict'] + 'train.pkl', 'rb') as f:
self.hist_len_dict_train = pkl.load(f)
with open(self.joint_train_config['hist_len_dict'] + 'test.pkl', 'rb') as f:
self.hist_len_dict_test = pkl.load(f)
self.loaded_models = []
self.model_names = []
for model_config in model_configs:
self.loaded_models.append(self._resume_checkpoint(model_config, dataset_config))
self.model_names.append(model_config['model_name'])
self.recall_model = self.loaded_models[0]
print('Multi-stage models have all been loaded')
self._build_faiss_index()
def _resume_checkpoint(self, model_config, dataset_config, resume_file = None):
if resume_file is not None:
checkpoint = torch.load(resume_file, map_location=self.device)
else:
ckpt_dir = self.save_model_dir
files = []
times = []
for file in os.listdir(ckpt_dir):
if file.startswith(model_config['model_name'].lower() + '-' + dataset_config['dataset_name']):
files.append(file)
time_str = '-'.join(file.split('-')[-5:])[:-4]
times.append(time.mktime(datetime.datetime.strptime(time_str, '%b-%d-%Y_%H-%M-%S').timetuple()))
f = os.path.join(ckpt_dir, files[np.argmax(times)])
print('loaded path: {}'.format(f))
checkpoint = torch.load(f, map_location=self.device)
model = get_model(model_config['model_name'], model_config, self.dataset_config).to(self.device)
# load architecture params from checkpoint
if self.load_models:
model.load_state_dict(checkpoint['state_dict'])
print('Model: {} has been loaded'.format(model_config['model_name']))
return model
def _build_faiss_index(self):
self.recall_model.eval()
item_repres = []
item_loader = Dataloader(self.item_set, self.batch_size, False)
print('building faiss index...')
for batch_idx, batch_data in enumerate(tqdm(item_loader, total=item_loader.total_step, ncols=100, position=0, leave=True)):
x_item = torch.from_numpy(batch_data[0]).to(self.device)
item_repre = self.recall_model.get_item_repre(x_item)
item_repres.append(item_repre)
self.item_repres = torch.cat(item_repres).cpu().detach().numpy()
self.index = faiss.IndexFlatIP(item_repre.shape[1])
# faiss.normalize_L2(self.item_repres)
self.index.add(self.item_repres)
print('index ntotal is: {}'.format(self.index.ntotal))
# torch.cuda.empty_cache()
def _gen_recall_res(self, data_part):
self.recall_model.eval()
user_repres = []
user_set = UserSet(self.dataset_config, data_part).get_user_set()
user_loader = Dataloader(user_set, self.batch_size, False)
print('generate recall results...')
for batch_idx, batch_data in enumerate(tqdm(user_loader, total=user_loader.total_step, ncols=100, position=0, leave=True)):
x_user = torch.from_numpy(batch_data[0]).to(self.device)
user_hist = None
hist_len = None
if self.recall_model.use_hist:
user_hist, hist_len = self._get_user_hist(x_user, data_part)
user_hist = user_hist.to(self.device)
hist_len = hist_len.to(self.device)
user_repre = self.recall_model.get_user_repre(x_user, user_hist, hist_len)
user_repres.append(user_repre)
self.user_repres = torch.cat(user_repres).cpu().detach().numpy()
recall_size = self.score_sizes['recall']
print('faiss searching begin...')
# faiss.normalize_L2(self.user_repres)
recall_score, i = self.index.search(self.user_repres, k=recall_size)
print('faiss searching finished')
i = i.flatten().reshape([-1,1])
recalled_items = np.take_along_axis(self.item_set[0], i, axis=0).reshape([-1, recall_size, self.dataset_config['item_num_fields']])
recalled_items_iid = np.expand_dims(recalled_items[:,:,0], 2)
users_tile = user_set[0].reshape([-1, 1, user_set[0].shape[1]])
users_tile = np.tile(users_tile, (1, recall_size, 1))
users_tile_iid = np.expand_dims(users_tile[:,:,0], axis=2)
recalled_ui_pair = np.concatenate((users_tile_iid, recalled_items_iid), axis=2)
return users_tile, recalled_items, recalled_ui_pair, recall_score.reshape([-1,])
def _get_labels(self, recalled_ui_pair, data_part):
with open(os.path.join(self.dataset_config['data_dir'], '{}_gt.pkl'.format(data_part)), 'rb') as f:
gt_dict = pkl.load(f)
labels = np.zeros(recalled_ui_pair.shape[:2], dtype=np.float32)
total_user_num = recalled_ui_pair.shape[0]
recall_size = self.score_sizes['recall']
total_relevant_num = np.ones((total_user_num,))
print('get labels for all recalled items...')
cnt = 0
for i in range(total_user_num):
total_relevant_num[i] = len(gt_dict[recalled_ui_pair[i][0][0]])
for j in range(recall_size):
if recalled_ui_pair[i][j][1] in gt_dict[recalled_ui_pair[i][j][0]]:
cnt += 1
labels[i][j] = 1
print('total pos number: {}'.format(cnt))
return labels, total_relevant_num
def _get_stage_scoring_data(self, stage_idx, users_tile, candidate_items, data_part):
self.loaded_models[stage_idx].eval()
# reshape the inputs
users_tile = users_tile.reshape([-1, self.dataset_config['user_num_fields']])
candidate_items = candidate_items.reshape([-1, self.dataset_config['item_num_fields']])
preds = []
dataset_tuple = [users_tile, candidate_items, np.concatenate((users_tile, candidate_items), axis=1)]
dl = Dataloader(dataset_tuple, self.batch_size, False)
print('begin forward calculation of stage {}...'.format(self.stage_names[stage_idx]))
for batch_data in tqdm(dl, total=dl.total_step, ncols=100, position=0, leave=True):
x_user, x_item, x = batch_data
user_hist = None
hist_len = None
if self.loaded_models[stage_idx].use_hist:
user_hist, hist_len = self._get_user_hist(x_user, data_part)
user_hist = user_hist.to(self.device)
hist_len = hist_len.to(self.device)
x_user = torch.from_numpy(x_user).to(self.device)
x_item = torch.from_numpy(x_item).to(self.device)
pred = self.loaded_models[stage_idx](x_user, x_item, user_hist, hist_len)
pred = pred.cpu().detach().numpy()
preds.append(pred)#pred if preds is None else np.concatenate((preds, pred), axis=0)
return np.concatenate(preds, axis=0)
def _test_one_stage(self, preds, bids, labels, total_relevant_num, stage_name):
metrics = TopKMetric(self.topk_dict[stage_name], self.rec_sizes[stage_name], \
labels, preds, bids, total_relevant_num, stage_name) if self.eval_modes[stage_name] == 'list' else PointMetric(labels, preds)
eval_result = metrics.get_metrics()
return eval_result
# for testing
def test_all_stages(self, data_part):
users_tile, candidate_items, recalled_ui_pair, recall_score = self._gen_recall_res(data_part)
labels, total_relevant_num = self._get_labels(recalled_ui_pair, data_part)
recsys_evals = {}
for i, stage_name in enumerate(self.stage_names):
# model = self.loaded_models[i]
if stage_name == 'recall':
preds = recall_score
else:
preds = self._get_stage_scoring_data(i, users_tile, candidate_items, data_part)
# get this stage results
preds = preds.reshape([-1, self.score_sizes[stage_name]])
if stage_name == 'ranking' and self.involve_bid:
random_state = np.random.RandomState(self.joint_train_config['seed'])
bids = random_state.lognormal(3, 0.5, preds.shape)
preds = preds * bids
# print(bids)
else:
bids = None
sorted_index = np.argsort(-preds, axis=1)[:,:self.rec_sizes[self.stage_names[i]]]
select_preds = np.take_along_axis(preds, sorted_index, axis=1).reshape([-1,])
select_labels = np.take_along_axis(labels, sorted_index, axis=1).reshape([-1,])
eval_result = self._test_one_stage(select_preds, bids, select_labels, total_relevant_num, stage_name)
recsys_evals[stage_name] = eval_result
# input of next stage
sorted_index_user = np.tile(np.expand_dims(sorted_index,axis=2),(1,1,self.dataset_config['user_num_fields']))
sorted_index_item = np.tile(np.expand_dims(sorted_index,axis=2),(1,1,self.dataset_config['item_num_fields']))
users_tile = np.take_along_axis(users_tile, sorted_index_user, axis=1)
candidate_items = np.take_along_axis(candidate_items, sorted_index_item, axis=1)
labels = np.take_along_axis(labels, sorted_index, axis=1)
return recsys_evals
# for training
def gen_stage_data(self, data_part):
stage_data = []
users_tile, candidate_items, recalled_ui_pair, recall_score = self._gen_recall_res(data_part)
labels, _ = self._get_labels(recalled_ui_pair, data_part)
for i, stage_name in enumerate(self.stage_names):
# r stands for reshape
users_tile_r = users_tile.reshape([-1, self.dataset_config['user_num_fields']])
candidate_items_r = candidate_items.reshape([-1, self.dataset_config['item_num_fields']])
labels_r = labels.reshape([-1,])
stage_data.append([users_tile_r, candidate_items_r, labels_r])
# get next stage data
if stage_name == 'recall':
preds = recall_score
else:
preds = self._get_stage_scoring_data(i, users_tile, candidate_items, data_part)
preds = preds.reshape([-1, self.score_sizes[stage_name]])
sorted_index = np.argsort(-preds, axis=1)[:,:self.rec_sizes[self.stage_names[i]]]
sorted_index_user = np.tile(np.expand_dims(sorted_index,axis=2),(1,1,self.dataset_config['user_num_fields']))
sorted_index_item = np.tile(np.expand_dims(sorted_index,axis=2),(1,1,self.dataset_config['item_num_fields']))
users_tile = np.take_along_axis(users_tile, sorted_index_user, axis=1)
candidate_items = np.take_along_axis(candidate_items, sorted_index_item, axis=1)
labels = np.take_along_axis(labels, sorted_index, axis=1)
return stage_data
def update_model(self, stage_idx, new_model):
self.loaded_models[stage_idx] = new_model
def update_faiss_index(self):
self._build_faiss_index()
def get_model_names(self):
return self.model_names
def get_model(self, idx):
return self.loaded_models[idx]
def _get_user_hist(self, x_user, stage = 'train'):
uids = x_user[:,0].tolist()
user_history = []
hist_len = []
if stage == 'train':
for uid in uids:
user_history.append(self.hist_dict_train[uid])
hist_len.append(self.hist_len_dict_train[uid])
elif stage == 'test':
for uid in uids:
user_history.append(self.hist_dict_test[uid])
hist_len.append(self.hist_len_dict_test[uid])
return torch.tensor(user_history), torch.tensor(hist_len)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('-ms', '--models', type=str, help='models name', default='dssm,fm,deepfm')
parser.add_argument('-d', '--dataset', type=str, help='dataset name', default='ml-1m')
args = parser.parse_args()
# go to root path
root_path = '..'
os.chdir(root_path)
data_config_path = os.path.join('configs/data_configs', args.dataset + '.yaml')
joint_train_config_path = os.path.join('configs/joint_train_configs', args.dataset + '.yaml')
loader = get_yaml_loader()
with open(data_config_path, 'r') as f:
data_config = yaml.load(f, Loader=loader)
with open(joint_train_config_path, 'r') as f:
joint_train_config = yaml.load(f, Loader=loader)
model_configs = []
models = args.models.split(',')
for model in models:
model_config_path = os.path.join('configs/model_configs', model + '.yaml')
with open(model_config_path, 'r') as f:
model_config = yaml.load(f, Loader=loader)
model_configs += [model_config[args.dataset]]
init_seed(joint_train_config['seed'], joint_train_config['reproducibility'])
recsys = RecSys(model_configs, data_config, joint_train_config)
recsys_evals = recsys.test_all_stages('test')
for stage in recsys_evals:
eval_output = set_color('eval result of stage: {}'.format(stage), 'blue') \
+ ': \n' + dict2str(recsys_evals[stage])
print(eval_output)
# recsys.gen_stage_data('train')