forked from azl397985856/leetcode
-
Notifications
You must be signed in to change notification settings - Fork 0
/
152.maximum-product-subarray.js
61 lines (59 loc) · 1.39 KB
/
152.maximum-product-subarray.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
/*
* @lc app=leetcode id=152 lang=javascript
*
* [152] Maximum Product Subarray
*
* https://leetcode.com/problems/maximum-product-subarray/description/
*
* algorithms
* Medium (28.61%)
* Total Accepted: 202.8K
* Total Submissions: 700K
* Testcase Example: '[2,3,-2,4]'
*
* Given an integer array nums, find the contiguous subarray within an array
* (containing at least one number) which has the largest product.
*
* Example 1:
*
*
* Input: [2,3,-2,4]
* Output: 6
* Explanation: [2,3] has the largest product 6.
*
*
* Example 2:
*
*
* Input: [-2,0,-1]
* Output: 0
* Explanation: The result cannot be 2, because [-2,-1] is not a subarray.
*
*/
/**
* @param {number[]} nums
* @return {number}
*/
var maxProduct = function(nums) {
// let max = nums[0];
// let temp = null;
// for(let i = 0; i < nums.length; i++) {
// temp = nums[i];
// max = Math.max(temp, max);
// for(let j = i + 1; j < nums.length; j++) {
// temp *= nums[j];
// max = Math.max(temp, max);
// }
// }
// return max;
let max = nums[0];
let min = nums[0];
let res = nums[0];
for (let i = 1; i < nums.length; i++) {
let tmp = min;
min = Math.min(nums[i], Math.min(max * nums[i], min * nums[i])); // 取最小
max = Math.max(nums[i], Math.max(max * nums[i], tmp * nums[i])); /// 取最大
res = Math.max(res, max);
}
return res;
};