-
Notifications
You must be signed in to change notification settings - Fork 20
/
data_utils.py
302 lines (255 loc) · 10.2 KB
/
data_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
import os
from collections import defaultdict
import numpy as np
import torch
import torch.nn.functional as F
from scipy import sparse as sp
from sklearn.metrics import f1_score, roc_auc_score
from torch_sparse import SparseTensor
def rand_train_test_idx(label, train_prop=0.5, valid_prop=0.25, ignore_negative=True):
"""randomly splits label into train/valid/test splits"""
if ignore_negative:
labeled_nodes = torch.where(label != -1)[0]
else:
labeled_nodes = label
n = labeled_nodes.shape[0]
train_num = int(n * train_prop)
valid_num = int(n * valid_prop)
perm = torch.as_tensor(np.random.permutation(n))
train_indices = perm[:train_num]
val_indices = perm[train_num : train_num + valid_num]
test_indices = perm[train_num + valid_num :]
if not ignore_negative:
return train_indices, val_indices, test_indices
train_idx = labeled_nodes[train_indices]
valid_idx = labeled_nodes[val_indices]
test_idx = labeled_nodes[test_indices]
return train_idx, valid_idx, test_idx
def class_rand_splits(label, label_num_per_class, valid_num=500, test_num=1000):
"""use all remaining data points as test data, so test_num will not be used"""
train_idx, non_train_idx = [], []
idx = torch.arange(label.shape[0])
class_list = label.squeeze().unique()
for i in range(class_list.shape[0]):
c_i = class_list[i]
idx_i = idx[label.squeeze() == c_i]
n_i = idx_i.shape[0]
rand_idx = idx_i[torch.randperm(n_i)]
train_idx += rand_idx[:label_num_per_class].tolist()
non_train_idx += rand_idx[label_num_per_class:].tolist()
train_idx = torch.as_tensor(train_idx)
non_train_idx = torch.as_tensor(non_train_idx)
non_train_idx = non_train_idx[torch.randperm(non_train_idx.shape[0])]
valid_idx, test_idx = (
non_train_idx[:valid_num],
non_train_idx[valid_num : valid_num + test_num],
)
print(f"train:{train_idx.shape}, valid:{valid_idx.shape}, test:{test_idx.shape}")
split_idx = {"train": train_idx, "valid": valid_idx, "test": test_idx}
return split_idx
def normalize_feat(mx):
"""Row-normalize np or sparse matrix."""
rowsum = np.array(mx.sum(1))
r_inv = np.power(rowsum, -1).flatten()
r_inv[np.isinf(r_inv)] = 0.0
r_mat_inv = sp.diags(r_inv)
mx = r_mat_inv.dot(mx)
return mx
def eval_acc(y_true, y_pred):
acc_list = []
y_true = y_true.detach().cpu().numpy()
y_pred = y_pred.argmax(dim=-1, keepdim=True).detach().cpu().numpy()
for i in range(y_true.shape[1]):
is_labeled = y_true[:, i] == y_true[:, i]
correct = y_true[is_labeled, i] == y_pred[is_labeled, i]
acc_list.append(float(np.sum(correct)) / len(correct))
return sum(acc_list) / len(acc_list)
def eval_rocauc(y_true, y_pred):
rocauc_list = []
y_true = y_true.detach().cpu().numpy()
y_pred = y_pred.argmax(dim=-1, keepdim=True).detach().cpu().numpy()
for i in range(y_true.shape[1]):
y_true_i = y_true[:, i]
y_pred_i = y_pred[:, i]
if len(np.unique(y_true_i)) == 1:
continue
rocauc_i = roc_auc_score(y_true_i, y_pred_i)
rocauc_list.append(rocauc_i)
return np.mean(rocauc_list)
@torch.no_grad()
def evaluate(model, dataset, split_idx, eval_func, criterion, args, result=None):
if result is not None:
out = result
else:
model.eval()
if args.method == "fast_transgnn" or args.method == "glcn" or args.method == "nodeformer":
out, _ = model(dataset)
else:
out = model(dataset)
if out.size()[0] == 1:
out = out[0]
train_acc = eval_func(dataset.label[split_idx["train"]], out[split_idx["train"]])
valid_acc = eval_func(dataset.label[split_idx["valid"]], out[split_idx["valid"]])
test_acc = eval_func(dataset.label[split_idx["test"]], out[split_idx["test"]])
if args.dataset in (
"yelp-chi",
"deezer-europe",
"twitch-e",
"fb100",
"ogbn-proteins",
):
if dataset.label.shape[1] == 1:
true_label = F.one_hot(dataset.label, dataset.label.max() + 1).squeeze(1)
else:
true_label = dataset.label
valid_loss = criterion(
out[split_idx["valid"]],
true_label.squeeze(1)[split_idx["valid"]].to(torch.float),
)
else:
out = F.log_softmax(out, dim=1)
valid_loss = criterion(
out[split_idx["valid"]], dataset.label.squeeze(1)[split_idx["valid"]]
)
return train_acc, valid_acc, test_acc, valid_loss, out
def load_fixed_splits(dataset, name, protocol):
splits_lst = []
if name in ["cora", "citeseer", "pubmed"] and protocol == "semi":
splits = {}
splits["train"] = torch.as_tensor(dataset.train_idx)
splits["valid"] = torch.as_tensor(dataset.valid_idx)
splits["test"] = torch.as_tensor(dataset.test_idx)
splits_lst.append(splits)
elif name in ["chameleon", "squirrel"]:
file_path = f"../data/wiki_new/{name}/{name}_filtered.npz"
data = np.load(file_path)
train_masks = data["train_masks"] # (10, N), 10 splits
val_masks = data["val_masks"]
test_masks = data["test_masks"]
N = train_masks.shape[1]
node_idx = np.arange(N)
for i in range(10):
splits = {}
splits["train"] = torch.as_tensor(node_idx[train_masks[i]])
splits["valid"] = torch.as_tensor(node_idx[val_masks[i]])
splits["test"] = torch.as_tensor(node_idx[test_masks[i]])
splits_lst.append(splits)
elif name in ["film"]:
for i in range(10):
splits_file_path = (
"../data/geom-gcn/{}/{}".format(name, name)
+ "_split_0.6_0.2_"
+ str(i)
+ ".npz"
)
splits = {}
with np.load(splits_file_path) as splits_file:
splits["train"] = torch.BoolTensor(splits_file["train_mask"])
splits["valid"] = torch.BoolTensor(splits_file["val_mask"])
splits["test"] = torch.BoolTensor(splits_file["test_mask"])
splits_lst.append(splits)
elif name in ['deezer-europe']:
splits_lst = np.load(f'../data/deezer/{name}-splits.npy', allow_pickle=True)
for i in range(len(splits_lst)):
for key in splits_lst[i]:
if not torch.is_tensor(splits_lst[i][key]):
splits_lst[i][key] = torch.as_tensor(splits_lst[i][key])
elif name in ['roman-empire', 'amazon-ratings', 'minesweeper', 'tolokers', 'questions']:
for i in range(10):
i = (i+1) % 10
splits = {}
splits["train"] = dataset.train_idx[i]
splits["valid"] = dataset.valid_idx[i]
splits["test"] = dataset.test_idx[i]
splits_lst.append(splits)
else:
raise NotImplementedError
return splits_lst
def pad_1d_unsqueeze(x, padlen):
x = x + 1 # pad id = 0
xlen = x.size(0)
if xlen < padlen:
new_x = x.new_zeros([padlen], dtype=x.dtype)
new_x[:xlen] = x
x = new_x
return x.unsqueeze(0)
def pad_2d_unsqueeze(x, padlen):
x = x + 1 # pad id = 0
xlen, xdim = x.size()
if xlen < padlen:
new_x = x.new_zeros([padlen, xdim], dtype=x.dtype)
new_x[:xlen, :] = x
x = new_x
return x.unsqueeze(0)
def pad_attn_bias_unsqueeze(x, padlen):
xlen = x.size(0)
if xlen < padlen:
new_x = x.new_zeros([padlen, padlen], dtype=x.dtype).fill_(float("-inf"))
new_x[:xlen, :xlen] = x
new_x[xlen:, :xlen] = 0
x = new_x
return x.unsqueeze(0)
def pad_spatial_pos_unsqueeze(x, padlen):
x = x + 1
xlen = x.size(0)
if xlen < padlen:
new_x = x.new_zeros([padlen, padlen], dtype=x.dtype)
new_x[:xlen, :xlen] = x
x = new_x
return x.unsqueeze(0)
@torch.jit.script
def convert_to_single_emb(x, offset: int = 2):
feature_num = x.size(1) if len(x.size()) > 1 else 1
feature_offset = 1 + torch.arange(0, feature_num * offset, offset, dtype=torch.long)
x = x + feature_offset
return x
def preprocess_graph(graph):
edge_feat, edge_index, x = None, graph['edge_index'], graph['node_feat']
N = x.size(0)
x = convert_to_single_emb(x)
# node adj matrix [N, N] bool
adj = torch.zeros([N, N], dtype=torch.bool)
adj[edge_index[0, :], edge_index[1, :]] = True
# # edge feature here
# if len(edge_feat.size()) == 1:
# edge_feat = edge_feat[:, None]
# attn_edge_type = torch.zeros([N, N, edge_feat.size(-1)], dtype=torch.long)
# attn_edge_type[edge_index[0, :], edge_index[1, :]] = (
# convert_to_single_emb(edge_feat) + 1
# )
# shortest_path_result, path = algos.floyd_warshall(adj.numpy())
# max_dist = np.amax(shortest_path_result)
# edge_input = algos.gen_edge_input(max_dist, path, attn_edge_type.numpy())
max_node_num = x.size(0)
x = x.unsqueeze(0)
print('x',x.size())
# spatial_pos = torch.from_numpy((shortest_path_result)).long()
spatial_pos = torch.randint(0,1000,size=(max_node_num,max_node_num))
attn_bias = torch.zeros([N, N], dtype=torch.float) # with graph token
spatial_pos = pad_spatial_pos_unsqueeze(spatial_pos, max_node_num)
attn_bias = pad_attn_bias_unsqueeze(attn_bias, max_node_num)
in_degree = adj.long().sum(dim=1).view(-1)
in_degree = pad_1d_unsqueeze(in_degree, max_node_num)
# combine
graph['x'] = x
graph['attn_bias'] = attn_bias
# graph['attn_edge_type'] = attn_edge_type
graph['spatial_pos'] = spatial_pos
graph['in_degree'] = in_degree
graph['out_degree'] = in_degree # for undirected graph
# graph['edge_input'] = torch.from_numpy(edge_input).long()
return graph
def to_sparse_tensor(edge_index, edge_feat, num_nodes):
""" converts the edge_index into SparseTensor
"""
num_edges = edge_index.size(1)
(row, col), N, E = edge_index, num_nodes, num_edges
perm = (col * N + row).argsort()
row, col = row[perm], col[perm]
value = edge_feat[perm]
adj_t = SparseTensor(row=col, col=row, value=value,
sparse_sizes=(N, N), is_sorted=True)
# Pre-process some important attributes.
adj_t.storage.rowptr()
adj_t.storage.csr2csc()
return adj_t