-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathUsefulmaterial.txt
48 lines (26 loc) · 1.2 KB
/
Usefulmaterial.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
LSTM for time-series (sequence) problem:
Recurrent Neural Networks Tutorial
http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/
Understanding LSTM Networks
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
The Unreasonable Effectiveness of Recurrent Neural Networks
http://karpathy.github.io/2015/05/21/rnn-effectiveness/
LSTM (Long Short Term Memory)
http://christianherta.de/lehre/dataScience/machineLearning/neuralNetworks/LSTM.php
Simple LSTM
http://nicodjimenez.github.io/2014/08/08/lstm.html
Books about deep learning:
Neural Networks and Deep Learning:
http://neuralnetworksanddeeplearning.com/
Deep Learning:
http://www.deeplearningbook.org/
Course with videos:
CS231n: Convolutional Neural Networks for Visual Recognition
http://cs231n.stanford.edu/
Machine Learning: 2014-2015 (Deep Learning)
https://www.cs.ox.ac.uk/people/nando.defreitas/machinelearning/
Convolutional Neural Network (CNN):
Visualizing CNN architectures side by side with mxnet
http://josephpcohen.com/w/visualizing-cnn-architectures-side-by-side-with-mxnet/
Residual Networks <2015 ICCV, ImageNet 图像分类Top1>
http://blog.csdn.net/abcjennifer/article/details/50514124