-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSimpleNetwork.cpp
97 lines (85 loc) · 2.03 KB
/
SimpleNetwork.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
#include "SimpleNetwork.h"
template<typename T>
std::vector<T> SimpleNetwork<T>::forward(const std::vector<T> & input, const SimpleMatrix<T> & layer)
{
std::vector<T> output(layer.rows);
// calculate product
for (size_t i = 0; i < layer.rows; i++)
{
T res = 0;
for (size_t j = 0; j < layer.cols; j++)
{
res += input[j] * layer.matrix[i][j];
}
output[i] = res;
}
return output;
}
template<typename T>
void SimpleNetwork<T>::randomize_weights()
{
std::random_device dev;
std::mt19937 rng(dev());
std::uniform_real_distribution<> dist(-1.0, 1.0);
for (size_t layer_it = 0; layer_it < layers.size(); layer_it++)
{
auto& layer = layers[layer_it];
for (size_t row_it = 0; row_it < layer.rows; row_it++)
{
for (size_t col_it = 0; col_it < layer.cols; col_it++)
{
layer.matrix[row_it][col_it] = (T) dist(rng);
}
}
}
}
template<typename T>
std::vector<T> SimpleNetwork<T>::ReLU(const std::vector<T> & input)
{
std::vector<T> output(input.size());
// calculate Leaky ReLU for every value in vector
for (size_t i = 0; i < input.size(); i++)
{
T x = input[i];
if (x > 0) {
output[i] = x;
}
else
output[i] = (T) 0.01 * x;
}
return output;
}
template<typename T>
void SimpleNetwork<T>::add_layer(long size)
{
size_t len = layers.size();
if (len > 0) {
auto& prev_layer = layers[len - 1];
long prev_rows = prev_layer.rows;
layers.push_back(SimpleMatrix<T>(size, prev_rows));
}
// if no layers exist, calculate matrix size based on input size
else
layers.push_back(SimpleMatrix<T>(size, input_size));
}
template<typename T>
void SimpleNetwork<T>::set_input(const std::vector<T> & input)
{
input_vec = input;
input_vec.resize(input_size, 0);
}
template<typename T>
std::vector<T> SimpleNetwork<T>::get_output()
{
std::vector<T> local_out = input_vec;
for (const auto & layer : layers)
{
local_out = forward(local_out, layer);
local_out = ReLU(local_out);
}
output_vec = local_out;
return output_vec;
}
template SimpleNetwork<double>;
template SimpleNetwork<float>;
template SimpleNetwork<long>;