forked from perlatex/R_for_Data_Science
-
Notifications
You must be signed in to change notification settings - Fork 0
/
eda_covid2019.Rmd
780 lines (605 loc) · 19.1 KB
/
eda_covid2019.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
# 探索性数据分析-新冠疫情 {#eda-covid2019}
```{r eda-covid2019-1, message = FALSE, warning = FALSE}
library(tidyverse)
library(lubridate)
library(maps)
library(viridis)
library(ggrepel)
library(paletteer)
library(shadowtext)
library(showtext)
showtext_auto()
```
新型冠状病毒(COVID-19)疫情在多国蔓延,本章通过分析[疫情数据](https://github.com/CSSEGISandData/COVID-19),了解疫情发展,祝愿人类早日会战胜病毒!
```{r eda-covid2019-2, out.width='45%', fig.align='left', fig.cap='电影《传染病》,《流感》海报', echo=FALSE}
knitr::include_graphics(c("images/movie_contagion.jpg", "images/movie_flu.png"))
```
## 数据来源
我们打开链接[https://github.com/CSSEGISandData/COVID-19](https://github.com/CSSEGISandData/COVID-19),
```{r eda-covid2019-3, out.width='85%', fig.align='left', echo = F}
knitr::include_graphics("images/github_COVID-19_download.png")
```
找到疫情时间序列数据,你可以通过点击该网页`Clone or download`直接下载的方式获取数据。
```{r eda-covid2019-4, out.width='85%', fig.align='left', echo = F}
knitr::include_graphics("images/github_COVID-19_files.png")
```
## 读取数据
假定你已经下载了数据,比如`time_series_covid19_confirmed_global.csv`, 那么我们可以用`readr::read_csv()`函数直接读取, 关于在R语言里文件读取的方法可以参考第 \@ref(readr) 章。
```{r eda-covid2019-5}
d <- read_csv("./demo_data/time_series_covid19_confirmed_global.csv")
d
```
## 数据集结构
探索数据之前,我们一定要对数据**存储结构、数据变量名及其含义**要非常清楚,重要的事情说三遍。
```{r eda-covid2019-6}
glimpse(d)
```
## 数据清洗规整
### 必要的预备知识之`select()`
```{r eda-covid2019-7, eval = FALSE}
d %>% select(-c(1:4))
d %>% select(5:ncol(.))
d %>% select(matches("/20"))
d %>% select(ends_with("/20"))
# 应该还有其他的方法
```
### 必要的预备知识之`pivot_longer()`
**宽表格**变**长表格**,需要用到`pivot_longer()` 和 `pivot_wider()`, 比如
```{r eda-covid2019-8, out.width='99%', fig.align='left', echo = F}
knitr::include_graphics("images/pivot.png")
```
```{r eda-covid2019-9}
table4a
```
```{r eda-covid2019-10}
longer <- table4a %>%
pivot_longer(
cols = `1999`:`2000`,
names_to = "year",
values_to = "cases"
)
longer
```
### 必要的预备知识之`pivot_wider()`
有时候我们想折腾下,比如把**长表格**再变回**宽表格**
```{r eda-covid2019-11}
longer %>%
pivot_wider(
names_from = year,
values_from = cases
)
```
### 必要的预备知识之日期格式
有时候,我会遇到日期`date`这种数据类型,我推荐使用`lubridate`包来处理,比如
```{r eda-covid2019-12}
c("2020-3-25", "20200325", "20-03-25", "2020 03 25") %>% lubridate::ymd()
```
```{r eda-covid2019-13}
c("3/25/20", "03-25-20", "3-25/2020") %>% lubridate::mdy()
```
遇到这种`010210`日期的,请把输入数据的人扁一顿,他会告诉你的
```{r eda-covid2019-14, eval=FALSE}
lubridate::dmy(010210)
lubridate::dym(010210)
lubridate::mdy(010210)
lubridate::myd(010210)
lubridate::ymd(010210)
lubridate::ydm(010210)
```
### 必要的预备知识之时间差
```{r eda-covid2019-15}
difftime(ymd("2020-03-24"),
ymd("2020-03-23"),
units = "days"
)
```
或者更直观的表述
```{r eda-covid2019-16}
ymd("2020-03-24") - ymd("2020-03-23")
```
转换为天数
```{r eda-covid2019-17}
(ymd("2020-03-24") - ymd("2020-03-23")) %>% as.numeric()
```
### 有时候需要log10_scale
```{r eda-covid2019-18, out.width = '100%'}
tb <- tibble(
days_since_100 = 0:18,
cases = 100 * 1.33^days_since_100
)
p1 <- tb %>%
ggplot(aes(days_since_100, cases)) +
geom_line(size = 0.8) +
geom_point(pch = 21, size = 1)
p2 <- tb %>%
ggplot(aes(days_since_100, log10(cases))) +
geom_line(size = 0.8) +
geom_point(pch = 21, size = 1)
p3 <- tb %>%
ggplot(aes(days_since_100, cases)) +
geom_line(size = 0.8) +
geom_point(pch = 21, size = 1) +
scale_y_log10()
library(patchwork)
p1 + p2 + p3
```
### 数据清洗规整
```{r eda-covid2019-19}
d1 <- d %>%
pivot_longer(
cols = 5:ncol(.),
names_to = "date",
values_to = "cases"
) %>%
mutate(date = lubridate::mdy(date)) %>%
janitor::clean_names() %>%
group_by(country_region, date) %>%
summarise(cases = sum(cases)) %>%
ungroup()
d1
```
```{r eda-covid2019-20}
d1 %>%
group_by(date) %>%
summarise(confirmed = sum(cases))
```
【WHO:2019冠状病毒全球大流行正在“加速”】世界卫生组织(WHO)昨日发出警告,指2019冠状病毒全球感染者已超过30万人,全球大流行正在“加速”。世卫组织指,从首例病例报告到感染者达到10万人用了67天;感染人数增至20万用了11天;从20万到突破30万则只用了4天。
```{r eda-covid2019-21, out.width = '100%'}
d1 %>%
group_by(date) %>%
summarise(confirmed = sum(cases)) %>%
ggplot(aes(x = date, y = confirmed)) +
geom_point() +
scale_x_date(
date_labels = "%m-%d",
date_breaks = "1 week"
) +
scale_y_continuous(
breaks = c(0, 50000, 100000, 200000, 300000, 500000, 900000),
labels = scales::comma
)
```
```{r eda-covid2019-22}
# d1 %>% distinct(country_region) %>% pull(country_region)
d1 %>% distinct(country_region)
```
```{r eda-covid2019-23}
d1 %>%
filter(country_region == "China")
```
```{r eda-covid2019-24, out.width = '100%'}
d1 %>%
filter(country_region == "China") %>%
ggplot(aes(x = date, y = cases)) +
geom_point() +
scale_x_date(date_breaks = "1 week", date_labels = "%m-%d") +
scale_y_log10(labels = scales::comma)
```
```{r eda-covid2019-25, out.width = '100%'}
d1 %>%
group_by(country_region) %>%
filter(max(cases) >= 20000) %>%
ungroup() %>%
ggplot(aes(x = date, y = cases, color = country_region)) +
geom_point() +
scale_x_date(date_breaks = "1 week", date_labels = "%m-%d") +
scale_y_log10() +
facet_wrap(vars(country_region), ncol = 2) +
theme(
axis.text.x = element_text(angle = 45, hjust = 1)
) +
theme(legend.position = "none")
```
## 可视化探索
网站[https://www.ft.com/coronavirus-latest](https://www.ft.com/coronavirus-latest) 这张图很受关注,于是打算重复
```{r eda-covid2019-26, out.width='85%', fig.align='left', fig.cap='图片来源www.ft.com', echo=FALSE}
knitr::include_graphics("images/ft_coronavirus.jpg")
```
这张图想表达的是,出现100个案例后,各国确诊人数的爆发趋势
- 横坐标是天数,即在出现100个案例后的第几天
- 纵坐标是累积确诊人数
那么,我们需要对数据的**时间轴**做相应的变形
- 首先按照国家分组
- 筛选,累积确诊人数超过`100`的国家
- 找到所有`case >= 100`的日期,`date[cases >= 100]`
- 最早的日期,就说我们要找的**第 0 day**, `min(date[cases >= 100])`
- 构建新的一列`mutate( days_since_100 = date - min(date[cases >= 100])`
- 将`days_since_100`转换成数值型`as.numeric()`
```{r eda-covid2019-27}
d2 <- d1 %>%
group_by(country_region) %>%
filter(max(cases) >= 100) %>%
mutate(
days_since_100 = date - min(date[cases >= 100])
) %>%
mutate(days_since_100 = as.numeric(days_since_100)) %>%
filter(days_since_100 >= 0) %>%
ungroup()
d2
```
```{block eda-covid2019-28, type="danger"}
大家都谈过恋爱,也有可能失恋。大家失恋时间是不同的,若把失恋的当天作为第 0 day, 就可以比较失恋若干天后每个人精神波动情况。参照《失恋33天》
```
```{r eda-covid2019-29}
d2_most <- d2 %>%
group_by(country_region) %>%
top_n(1, days_since_100) %>%
filter(cases >= 10000) %>%
ungroup() %>%
arrange(desc(cases))
d2_most
```
```{r eda-covid2019-30, out.width = "100%"}
d2 %>%
bind_rows(
tibble(country = "33% daily rise", days_since_100 = 0:30) %>%
mutate(cases = 100 * 1.33^days_since_100)
) %>%
ggplot(aes(days_since_100, cases, color = country_region)) +
geom_hline(yintercept = 100) +
geom_vline(xintercept = 0) +
geom_line(size = 0.8) +
geom_point(pch = 21, size = 1) +
# scale_colour_manual(
# values = c(
# "US" = "#EB5E8D",
# "Italy" = "black",
# "Spain" = "#c2b7af",
# "China" = "red",
# "Germany" = "#c2b7af",
# "France" = "#c2b7af",
# "Iran" = "#9dbf57",
# "United Kingdom" = "#ce3140",
# "Korea, South" = "#208fce",
# "Japan" = "#208fce",
# "Singapore" = "#1E8FCC",
# "33% daily rise" = "#D9CCC3",
# "Switzerland" = "#c2b7af",
# "Turkey" = "#208fce",
# "Belgium" = "#c2b7af",
# "Netherlands" = "#c2b7af",
# "Austria" = "#c2b7af",
# "Hong Kong" = "#1E8FCC",
# # gray
# "India" = "#c2b7af",
# "Switzerland" = "#c2b7af",
# "Belgium" = "#c2b7af",
# "Norway" = "#c2b7af",
# "Sweden" = "#c2b7af",
# "Austria" = "#c2b7af",
# "Australia" = "#c2b7af",
# "Denmark" = "#c2b7af",
# "Canada" = "#c2b7af",
# "Brazil" = "#c2b7af",
# "Portugal" = "#c2b7af"
# )
# ) +
geom_shadowtext(
data = d2_most, aes(label = paste0(" ", country_region)),
bg.color = "white"
) +
scale_y_log10(
expand = expansion(mult = c(0, .1)),
breaks = c(100, 200, 500, 1000, 2000, 5000, 10000, 20000, 50000),
labels = scales::comma
) +
scale_x_continuous(
expand = expansion(mult = c(0, .1)),
breaks = c(0, 5, 10, 15, 20, 25, 30)
) +
theme_minimal() +
theme(
panel.grid.minor = element_blank(),
plot.background = element_rect(fill = "#FFF1E6"),
legend.position = "none",
panel.spacing = margin(3, 15, 3, 15, "mm")
) +
labs(
x = "Number of days since 100th case",
y = "",
title = "Country by country: how coronavirus case trajectories compare",
subtitle = "Cumulative number of cases, by Number of days since 100th case",
caption = "data source from @www.ft.com"
)
```
有点乱,还有很多细节没有实现,后面再弄弄了
### 简便的方法
```{r eda-covid2019-31}
d2a <- d1 %>%
group_by(country_region) %>%
filter(cases >= 100) %>%
mutate(days_since_100 = 0:(n() - 1)) %>%
# same as
# mutate(edate = as.numeric(date - min(date)))
ungroup()
d2a
```
这里的`d2a` 和`d2`是一样的了,但方法简单很多。
### 疫情持续时间最久的国家
```{r eda-covid2019-32}
d3 <- d2a %>%
group_by(country_region) %>%
filter(days_since_100 == max(days_since_100)) %>%
# same as
# top_n(1, days_since_100) %>%
ungroup() %>%
arrange(desc(days_since_100))
d3
```
```{r eda-covid2019-33}
highlight <- d3 %>%
top_n(10, days_since_100) %>%
pull(country_region)
highlight
```
```{r eda-covid2019-34, out.width = '100%'}
d2a %>%
bind_rows(
tibble(country = "33% daily rise", days_since_100 = 0:30) %>%
mutate(cases = 100 * 1.33^days_since_100)
) %>%
ggplot(aes(days_since_100, cases, color = country_region)) +
geom_hline(yintercept = 100) +
geom_vline(xintercept = 0) +
geom_line(size = 0.8) +
geom_point(pch = 21, size = 1) +
scale_y_log10(
expand = expansion(mult = c(0, .1)),
breaks = c(100, 200, 500, 1000, 2000, 5000, 10000, 20000, 50000, 100000),
labels = scales::comma
) +
scale_x_continuous(
expand = expansion(mult = c(0, .1)),
breaks = c(0, 5, 10, 15, 20, 25, 30, 40, 50, 60)
) +
theme_minimal() +
theme(
panel.grid.minor = element_blank(),
plot.background = element_rect(fill = "#FFF1E6"),
legend.position = "none",
panel.spacing = margin(3, 15, 3, 15, "mm")
) +
labs(
x = "Number of days since 100th case",
y = "",
title = "Country by country: how coronavirus case trajectories compare",
subtitle = "Cumulative number of cases, by Number of days since 100th case",
caption = "data source from @www.ft.com"
) +
gghighlight::gghighlight(country_region %in% highlight,
label_key = country_region, use_direct_label = TRUE,
label_params = list(segment.color = NA, nudge_x = 1),
use_group_by = FALSE
)
```
灰色线条的国家名,有点不好弄,在想办法
### 笨办法吧
笨办法,实际上是4张表共同完成
```{r eda-covid2019-35}
highlight <- c(
"China", "Spain", "US", "United Kingdom", "Korea, South",
"Italy", "Japan", "Singapore", "Germany", "France", "Iran"
)
gray <- c(
"India", "Switzerland", "Belgium", "Netherlands",
"Sweden", "Austria", "Australia", "Denmark",
"Canada", "Brazil", "Portugal"
)
d3_highlight <- d2a %>% filter(country_region %in% highlight)
d3_gray <- d2a %>% filter(country_region %in% gray)
```
```{r eda-covid2019-36, out.width = '100%'}
d2a %>%
ggplot(aes(days_since_100, cases, group = country_region)) +
geom_hline(yintercept = 100) +
geom_vline(xintercept = 0) +
geom_line(size = 0.8, color = "gray70") +
geom_point(pch = 21, size = 1, color = "gray70") +
# highlight country
geom_line(data = d3_highlight, aes(color = country_region)) +
geom_point(data = d3_highlight, aes(color = country_region)) +
geom_text(
data = d3_highlight %>%
group_by(country_region) %>%
top_n(1, days_since_100) %>%
ungroup(),
aes(color = country_region, label = country_region),
hjust = 0,
vjust = 0,
nudge_x = 0.5
) +
# gray country
geom_text(
data = d3_gray %>%
group_by(country_region) %>%
top_n(1, days_since_100) %>%
ungroup(),
aes(label = country_region),
color = "gray50",
hjust = 0,
vjust = 0,
nudge_x = 0.5
) +
geom_point(
data = d3_gray %>%
group_by(country_region) %>%
top_n(1, days_since_100) %>%
ungroup(),
size = 2,
color = "gray50"
) +
scale_y_log10(
expand = expansion(mult = c(0, .1)),
breaks = c(100, 200, 500, 2000, 5000, 10000, 20000, 50000, 100000, 150000),
labels = scales::comma
) +
scale_x_continuous(
expand = expansion(mult = c(0, .1)),
breaks = c(0, 5, 10, 15, 20, 25, 30, 40, 50, 60)
) +
theme_minimal() +
theme(
panel.grid.minor = element_blank(),
plot.background = element_rect(fill = "#FFF1E6"),
legend.position = "none",
panel.spacing = margin(3, 15, 3, 15, "mm")
) +
labs(
x = "Number of days since 100th case",
y = "",
title = "Country by country: how coronavirus case trajectories compare",
subtitle = "Cumulative number of cases, by Number of days since 100th case",
caption = "data source from @www.ft.com"
)
```
差强人意,再想想有没有好的办法
### 比较tidy的方法
对数据框d2a增加两列属性(有无标签,有无颜色),然后手动改颜色
```{r eda-covid2019-37}
highlight_country <- d2a %>%
group_by(country_region) %>%
filter(days_since_100 == max(days_since_100)) %>%
ungroup() %>%
arrange(desc(days_since_100)) %>%
top_n(10, days_since_100) %>%
pull(country_region)
highlight_country
```
吸取了[Kieran Healy大神的配色方案](https://github.com/kjhealy/covid)
```{r eda-covid2019-38}
## Colors
cgroup_cols <- c(prismatic::clr_darken(paletteer_d("ggsci::category20_d3"), 0.2)[1:length(highlight_country)], "gray70")
scales::show_col(cgroup_cols)
```
```{r eda-covid2019-39}
d2a %>%
group_by(country_region) %>%
filter(max(days_since_100) > 9) %>%
mutate(
end_label = ifelse(days_since_100 == max(days_since_100), country_region, NA_character_)
) %>%
mutate(end_label = case_when(country_region %in% highlight_country ~ end_label,
TRUE ~ NA_character_),
cgroup = case_when(country_region %in% highlight_country ~ country_region,
TRUE ~ "ZZOTHER")) %>% # length(highlight_country) + gray
ggplot(aes(x = days_since_100, y = cases,
color = cgroup, label = end_label,
group = country_region)) +
geom_line(size = 0.8) +
geom_text_repel(nudge_x = 1.1,
nudge_y = 0.1,
segment.color = NA) +
guides(color = FALSE) +
scale_color_manual(values = cgroup_cols) +
scale_y_continuous(labels = scales::comma_format(accuracy = 1),
breaks = 10^seq(2, 8),
trans = "log10"
) +
labs(x = "Days Since 100 Confirmed Death",
y = "Cumulative Number of Deaths (log10 scale)",
title = "Cumulative Number of Reported Deaths from COVID-19, Selected Countries",
subtitle = "Cumulative number of cases, by Number of days since 100th case",
caption = "data source from @www.ft.com")
```
感觉这样是最好的方案。
## 每个国家的情况
```{r eda-covid2019-40}
d2 %>%
group_by(country_region) %>%
filter(max(cases) >= 1000) %>%
ungroup()
```
```{r eda-covid2019-41, out.width = '100%'}
d2 %>%
group_by(country_region) %>%
filter(max(cases) >= 1000) %>%
ungroup() %>%
ggplot(aes(days_since_100, cases)) +
geom_line(size = 0.8) +
geom_line(
data = d2 %>% rename(country = country_region),
aes(days_since_100, cases, group = country),
color = "grey"
) +
geom_point(pch = 21, size = 1, color = "red") +
scale_y_log10(
expand = expansion(mult = c(0, .1)),
breaks = c(100, 1000, 10000, 50000)
) +
scale_x_continuous(
expand = expansion(mult = c(0, 0)),
breaks = c(0, 5, 10, 20, 30, 50)
) +
facet_wrap(vars(country_region), scales = "free_x") +
theme(
panel.background = element_rect(fill = "#FFF1E6"),
plot.background = element_rect(fill = "#FFF1E6")
) +
labs(
x = "Number of days since 100th case",
y = "",
title = "Outbreak are now underway in dozens of other countries, with some on the same trajectory as Italy",
subtitle = "Cumulative number of cases, by Number of days since 100th case",
caption = "data source from @www.ft.com"
)
```
## 地图
```{r eda-covid2019-42, eval=FALSE}
library(countrycode)
# countrycode('Albania', 'country.name', 'iso3c')
d2_newest %>%
mutate(ISO3 = countrycode(country_region,
origin = "country.name", destination = "iso3c"
))
```
我们选取最新的日期
```{r eda-covid2019-43}
d_newest <- d %>%
select(Long, Lat, last_col()) %>%
set_names("Long", "Lat", "newest_date")
d_newest
```
```{r eda-covid2019-44, out.width = '100%'}
world <- map_data("world")
ggplot() +
geom_polygon(
data = world,
aes(x = long, y = lat, group = group),
fill = "grey", alpha = 0.3
) +
geom_point(
data = d_newest,
aes(x = Long, y = Lat, size = newest_date, color = newest_date),
stroke = F, alpha = 0.7
) +
scale_size_continuous(
name = "Cases", trans = "log",
range = c(1, 7),
breaks = c(1, 20, 100, 1000, 50000),
labels = c("1-19", "20-99", "100-999", "1,000-49,999", "50,000+")
) +
scale_color_viridis_c(
option = "inferno",
name = "Cases",
trans = "log",
breaks = c(1, 20, 100, 1000, 50000),
labels = c("1-19", "20-99", "100-999", "1,000-49,999", "50,000+")
) +
theme_void() +
guides(colour = guide_legend()) +
labs(
title = "Mapping the coronavirus outbreak",
subtitle = "",
caption = "Source: JHU Unviersity, CSSE; FT research @www.FT.com"
) +
theme(
legend.position = "bottom",
text = element_text(color = "#22211d"),
plot.background = element_rect(fill = "#ffffff", color = NA),
panel.background = element_rect(fill = "#ffffff", color = NA),
legend.background = element_rect(fill = "#ffffff", color = NA)
)
```
## 更多
- 参考 (https://www.ft.com/coronavirus-latest)
- (https://covid19datahub.io/)