Skip to content

Latest commit

 

History

History
87 lines (59 loc) · 4.31 KB

leetCode-45-Jump-Game-II.md

File metadata and controls

87 lines (59 loc) · 4.31 KB

题目描述(困难难度)

从数组的第 0 个位置开始跳,跳的距离小于等于数组上对应的数。求出跳到最后个位置需要的最短步数。比如上图中的第 0 个位置是 2,那么可以跳 1 个距离,或者 2 个距离,我们选择跳 1 个距离,就跳到了第 1 个位置,也就是 3 上。然后我们可以跳 1,2,3 个距离,我们选择跳 3 个距离,就直接到最后了。所以总共需要 2 步。

解法一 顺藤摸瓜

参考这里,leetCode 讨论里,大部分都是这个思路,贪婪算法,我们每次在可跳范围内选择可以使得跳的更远的位置。

如下图,开始的位置是 2,可跳的范围是橙色的。然后因为 3 可以跳的更远,所以跳到 3 的位置。

如下图,然后现在的位置就是 3 了,能跳的范围是橙色的,然后因为 4 可以跳的更远,所以下次跳到 4 的位置。

写代码的话,我们用 end 表示当前能跳的边界,对于上边第一个图的橙色 1,第二个图中就是橙色的 4,遍历数组的时候,到了边界,我们就重新更新新的边界。

public int jump(int[] nums) {
    int end = 0;
    int maxPosition = 0; 
    int steps = 0;
    for(int i = 0; i < nums.length - 1; i++){
        //找能跳的最远的
        maxPosition = Math.max(maxPosition, nums[i] + i); 
        if( i == end){ //遇到边界,就更新边界,并且步数加一
            end = maxPosition;
            steps++;
        }
    }
    return steps;
}

时间复杂度:O(n)。

空间复杂度:O(1)。

这里要注意一个细节,就是 for 循环中,i < nums.length - 1,少了末尾。因为开始的时候边界是第 0 个位置,steps 已经加 1 了。如下图,如果最后一步刚好跳到了末尾,此时 steps 其实不用加 1 了。如果是 i < nums.length,i 遍历到最后的时候,会进入 if 语句中,steps 会多加 1 。

解法二 顺瓜摸藤

我们知道最终要到达最后一个位置,然后我们找前一个位置,遍历数组,找到能到达它的位置,离它最远的就是要找的位置。然后继续找上上个位置,最后到了第 0 个位置就结束了。

至于离它最远的位置,其实我们从左到右遍历数组,第一个满足的位置就是我们要找的。

public int jump(int[] nums) {
    int position = nums.length - 1; //要找的位置
    int steps = 0;
    while (position != 0) { //是否到了第 0 个位置
        for (int i = 0; i < position; i++) {
            if (nums[i] >= position - i) {
                position = i; //更新要找的位置
                steps++;
                break;
            }
        }
    }
    return steps;
}

时间复杂度:O(n²),因为最坏的情况比如 1 1 1 1 1 1,position 会从 5 更新到 0 ,并且每次更新都会经历一个 for 循环。

空间复杂度:O(1)。

这种想法看起来更简单了,为什么奏效呢?我们可以这样想。

从左到右跳的话,2 -> 3 -> 4 -> 1。

从右到左的话,我们找能跳到 1 的最左边的位置,我们找的只能是 4 或者是 4 左边的。

找到 4 的话,不用说,刚好完美。

如果是中间范围 3 和 4 之间的第 2 个 1 变成了 3,那么这个位置也可以跳到末尾的 1,按我们的算法我们就找到了这个 3,也就是 4 左边的位置。但其实并不影响我们的 steps,因为这个数字是 3 到 4 中间范围的数,左边界 3 也可以到这个数,所以下次找的话,会找到边界 3 ,或者边界 3 左边的数。 会不会直接找到 上个边界 2 呢?不会的,如果找到了上一个边界 2,那么意味着从 2 直接跳到 3 和 4 之间的那个数,再从这个数跳到末尾就只需 2 步了,但是其实是需要 3 步的。

刷这么多题,第一次遇到了贪心算法,每次找局部最优,最后达到全局最优,完美!