Open-source, implicit 3D structural geological modeling in Python.
GemPy is a Python-based, open-source geomodeling library. It is capable of constructing complex 3D geological models of folded structures, fault networks and unconformities, based on the underlying powerful implicit representation approach.
We provide the latest release version of GemPy via PyPi package services. We highly recommend using PyPi,
$ pip install gempy
as it will take care of automatically installing all the required dependencies - except in windows that requires one extra step.
Windows does not have a gcc compilers pre-installed. The easiest way to get a theano compatible compiler is by using the theano conda installation. Therefore the process would be the following:
$ conda install theano
$ pip install gempy
For more information, refer to the installation documentation
-
Getting started: Notebook tutorial
-
Video tutorial: Transform 2020 Gempy Introduction
-
Documentation: docs.gempy.org
-
Tutorials and examples: tutorials.gempy.org
- de la Varga, M., Schaaf, A., and Wellmann, F.: GemPy 1.0: open-source stochastic geological modeling and inversion, Geosci. Model Dev., 12, 1-32, https://doi.org/10.5194/gmd-12-1-2019, 2019
- Calcagno, P., Chilès, J. P., Courrioux, G., & Guillen, A. (2008). Geological modelling from field data and geological knowledge: Part I. Modelling method coupling 3D potential-field interpolation and geological rules. Physics of the Earth and Planetary Interiors, 171(1-4), 147-157.
- Lajaunie, C., Courrioux, G., & Manuel, L. (1997). Foliation fields and 3D cartography in geology: principles of a method based on potential interpolation. Mathematical Geology, 29(4), 571-584.
- Wellmann, F., Schaaf, A., de la Varga, M., & von Hagke, C. (2019). From Google Earth to 3D Geology Problem 2: Seeing Below the Surface of the Digital Earth. In Developments in Structural Geology and Tectonics (Vol. 5, pp. 189-204). Elsevier.
- add other papers