-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathVector.h
213 lines (186 loc) · 5.2 KB
/
Vector.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
/** @file Vector.h
*
* @author marco corvi
* @date dec 2008
*
* @brief 3D real vector
*
* @note after the Vector.cs class by B. Heeb
* --------------------------------------------------------
* Copyright This sowftare is distributed under GPL-3.0 or later
* See the file COPYING.
*/
#ifndef VECTOR_H
#define VECTOR_H
#include <stdlib.h>
#include <math.h>
/** a 3D vector is defined by its components in a certain basis
* ie, three real numbers
*/
class Vector
{
private:
double x; //!< X component
double y; //!< Y component
double z; //!< Z component
public:
static Vector zero; //!< zero vector, ie, (0,0,0)
// accessor
double X() const { return x; }
double Y() const { return y; }
double Z() const { return z; }
double & X() { return x; }
double & Y() { return y; }
double & Z() { return z; }
public:
/** cstr
* @param x0 X component [default 0.0]
* @param y0 Y component [default 0.0]
* @param z0 Z component [default 0.0]
*/
Vector( double x0=0.0, double y0=0.0, double z0=0.0 )
: x( x0 )
, y( y0 )
, z( z0 )
{ }
/** vector sum
* @param v added vector
* @return the vector sum of this vector and v
*/
Vector operator+ ( const Vector & v ) const
{
return Vector( x + v.x, y + v.y, z + v.z );
}
/** vector sum of this vector withanother one
* @param v another vector
* @return this vector
*/
Vector & operator+= ( const Vector & v )
{
x += v.x;
y += v.y;
z += v.z;
return *this;
}
/** vector difference
* @param v vector to subtract
* @return the vector difference of this vector and v
*/
Vector operator- ( const Vector & v ) const
{
return Vector( x - v.x, y - v.y, z - v.z );
}
/** vector subtraction of this vector with another one
* @param v another vector
* @return this vector
*/
Vector & operator-= ( const Vector & v )
{
x -= v.x;
y -= v.y;
z -= v.z;
return *this;
}
/** dot product
* @param v another vector
* @return the dot product of this vector and v
*/
double operator* ( const Vector & v ) const
{
return ( x * v.x + y * v.y + z * v.z );
}
/** multplication by a number
* @param a number that multiplies the vector
* @return the vector multiplication of this vector and the number
*/
Vector operator* ( double a ) const
{
return Vector( x * a, y * a, z * a );
}
/** multplication by a number
* @param a number that multiplies this vector
* @return this vector
*/
Vector & operator*= ( double a )
{
x *= a;
y *= a;
z *= a;
return *this;
}
/** cross product of this vector with another one
* @param v another vector
* @return the cross product of this vector and v
*/
Vector operator% ( const Vector & v ) const
{
return Vector( y * v.z - z * v.y,
z * v.x - x * v.z,
x * v.y - y * v.x );
}
/** length of the vector
* @return the euclidean length of the vector
*/
double length( ) const
{
return sqrt( x*x + y*y + z*z );
}
/** rotation around the X axis by an angle
* @param s sine of the angle
* @param c cosine of the angle
* @return this vector rotated by a around the X axis
*/
Vector turnX( double s, double c ) const
{
// double c = cos( a );
// double s = sin( a );
return Vector( x, c*y - s*z, c*z + s*y );
}
/** rotation around the Y axis by an angle
* @param s sine of the angle
* @param c cosine of the angle
* @return this vector rotated by a around the Y axis
*/
Vector turnY( double s, double c ) const
{
return Vector( c*x + s*z, y, c*z - s*x );
}
/** rotation around the Z axis by an angle
* @param s sine of the angle
* @param c cosine of the angle
* @return this vector rotated by a around the Z axis
*/
Vector turnZ( double s, double c ) const
{
return Vector( c*x - s*y, c*y + s*x, z );
}
/** normalize this vector
*/
void normalize()
{
double d = this->length();
x /= d;
y /= d;
z /= d;
}
/** maximum coponent difference
* @param v another vector
* @return the maximum component difference between this vector and v
*/
double max_diff( const Vector & v ) const
{
double m1 = fabs( x - v.x );
double m2 = fabs( y - v.y );
double m3 = fabs( z - v.z );
return ( m1 > m2 ) ? ( m1 > m3 ) ? m1 : m3
: ( m2 > m3 ) ? m2 : m3 ;
}
/** external vector
* @return the external vector
*/
Vector Ext() const
{
return Vector( y - z, z - x, x - y );
}
}; // class Vector
#endif // VECTOR_H