forked from pytorch/examples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
76 lines (63 loc) · 2.6 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
import torch
import torch.nn as nn
from torch.autograd import Variable
class Bottle(nn.Module):
def forward(self, input):
if len(input.size()) <= 2:
return super(Bottle, self).forward(input)
size = input.size()[:2]
out = super(Bottle, self).forward(input.view(size[0]*size[1], -1))
return out.view(size[0], size[1], -1)
class Linear(Bottle, nn.Linear):
pass
class Encoder(nn.Module):
def __init__(self, config):
super(Encoder, self).__init__()
self.config = config
input_size = config.d_proj if config.projection else config.d_embed
self.rnn = nn.LSTM(input_size=input_size, hidden_size=config.d_hidden,
num_layers=config.n_layers, dropout=config.dp_ratio,
bidirectional=config.birnn)
def forward(self, inputs):
batch_size = inputs.size()[1]
state_shape = self.config.n_cells, batch_size, self.config.d_hidden
h0 = c0 = Variable(inputs.data.new(*state_shape).zero_())
outputs, (ht, ct) = self.rnn(inputs, (h0, c0))
return ht[-1] if not self.config.birnn else ht[-2:].transpose(0, 1).contiguous().view(batch_size, -1)
class SNLIClassifier(nn.Module):
def __init__(self, config):
super(SNLIClassifier, self).__init__()
self.config = config
self.embed = nn.Embedding(config.n_embed, config.d_embed)
self.projection = Linear(config.d_embed, config.d_proj)
self.encoder = Encoder(config)
self.dropout = nn.Dropout(p=config.dp_ratio)
self.relu = nn.ReLU()
seq_in_size = 2*config.d_hidden
if self.config.birnn:
seq_in_size *= 2
lin_config = [seq_in_size]*2
self.out = nn.Sequential(
Linear(*lin_config),
self.relu,
self.dropout,
Linear(*lin_config),
self.relu,
self.dropout,
Linear(*lin_config),
self.relu,
self.dropout,
Linear(seq_in_size, config.d_out))
def forward(self, batch):
prem_embed = self.embed(batch.premise)
hypo_embed = self.embed(batch.hypothesis)
if self.config.fix_emb:
prem_embed = Variable(prem_embed.data)
hypo_embed = Variable(hypo_embed.data)
if self.config.projection:
prem_embed = self.relu(self.projection(prem_embed))
hypo_embed = self.relu(self.projection(hypo_embed))
premise = self.encoder(prem_embed)
hypothesis = self.encoder(hypo_embed)
scores = self.out(torch.cat([premise, hypothesis], 1))
return scores