jupytext | kernelspec | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
|
+++ {"id": "vfxqky4PCUnh"}
[email protected], October 2019.
JAX implements certain transformations of Python functions, e.g., jit
, grad
,
vmap
, or pmap
. The Python functions to be transformed must be JAX-traceable,
which means that as the Python function executes
the only operations it applies to the data are either inspections of data
attributes such as shape or type, or special operations called JAX primitives.
In particular, a JAX-traceable function is sometimes invoked by JAX with
abstract arguments. An example of a JAX abstract value is ShapedArray(float32[2,2])
,
which captures the type and the shape of values, but not the concrete data values.
JAX primitives know how to operate on both concrete data
values and on the JAX abstract values.
The JAX-transformed functions must themselves be JAX-traceable functions,
to ensure that these transformations
can be composed, e.g., jit(jacfwd(grad(f)))
.
There are pre-defined JAX primitives corresponding to most XLA operations, e.g., add, matmul, sin, cos, indexing. JAX comes with an implementation of numpy functions in terms of JAX primitives, which means that Python programs using JAX’s implementation of numpy are JAX-traceable and therefore transformable. Other libraries can be made JAX-traceable by implementing them in terms of JAX primitives.
The set of JAX primitives is extensible. Instead of reimplementing a function in terms of pre-defined JAX primitives, one can define a new primitive that encapsulates the behavior of the function.
The goal of this document is to explain the interface that a JAX primitive must support in order to allow JAX to perform all its transformations.
Consider that we want to add to JAX support for a multiply-add function with three arguments, defined mathematically as "multiply_add(x, y, z) = x * y + z". This function operates on 3 identically-shaped tensors of floating point values and performs the operations pointwise.
+++ {"id": "HIJYIHNTD1yI"}
The easiest way to define new functions is to write them in terms of JAX primitives, or in terms of other
functions that are themselves written using JAX primitives, e.g., those
defined in the jax.lax
module:
:id: tbOF0LB0EMne
:outputId: 3fb1c8a7-7a4c-4a3a-f7ff-37b7dc740528
from jax import lax
from jax._src import api
def multiply_add_lax(x, y, z):
"""Implementation of multiply-add using the jax.lax primitives."""
return lax.add(lax.mul(x, y), z)
def square_add_lax(a, b):
"""A square-add function using the newly defined multiply-add."""
return multiply_add_lax(a, a, b)
print("square_add_lax = ", square_add_lax(2., 10.))
# Differentiate w.r.t. the first argument
print("grad(square_add_lax) = ", api.grad(square_add_lax, argnums=0)(2.0, 10.))
+++ {"id": "Cgv60Wm3E_D5"}
In order to understand how JAX is internally using the primitives, we add some helpers for tracing function calls.
:cellView: form
:id: mQRQGEGiE53K
#@title Helper functions (execute this cell)
import functools
import traceback
_indentation = 0
def _trace(msg=None):
"""Print a message at current indentation."""
if msg is not None:
print(" " * _indentation + msg)
def _trace_indent(msg=None):
"""Print a message and then indent the rest."""
global _indentation
_trace(msg)
_indentation = 1 + _indentation
def _trace_unindent(msg=None):
"""Unindent then print a message."""
global _indentation
_indentation = _indentation - 1
_trace(msg)
def trace(name):
"""A decorator for functions to trace arguments and results."""
def trace_func(func): # pylint: disable=missing-docstring
def pp(v):
"""Print certain values more succinctly"""
vtype = str(type(v))
if "jax._src.xla_bridge._JaxComputationBuilder" in vtype:
return "<JaxComputationBuilder>"
elif "jaxlib.xla_extension.XlaOp" in vtype:
return "<XlaOp at 0x{:x}>".format(id(v))
elif ("partial_eval.JaxprTracer" in vtype or
"batching.BatchTracer" in vtype or
"ad.JVPTracer" in vtype):
return "Traced<{}>".format(v.aval)
elif isinstance(v, tuple):
return "({})".format(pp_values(v))
else:
return str(v)
def pp_values(args):
return ", ".join([pp(arg) for arg in args])
@functools.wraps(func)
def func_wrapper(*args):
_trace_indent("call {}({})".format(name, pp_values(args)))
res = func(*args)
_trace_unindent("|<- {} = {}".format(name, pp(res)))
return res
return func_wrapper
return trace_func
class expectNotImplementedError(object):
"""Context manager to check for NotImplementedError."""
def __enter__(self): pass
def __exit__(self, type, value, tb):
global _indentation
_indentation = 0
if type is NotImplementedError:
print("\nFound expected exception:")
traceback.print_exc(limit=3)
return True
elif type is None: # No exception
assert False, "Expected NotImplementedError"
else:
return False
+++ {"id": "Qf4eLrLCFYDl"}
Instead of using jax.lax
primitives directly, we can use other functions
that are already written in terms of those primitives, such as those in jax.numpy
:
:id: QhKorz6cFRJb
:outputId: aba3cef3-6bcc-4eb3-c7b3-34e405f2f82a
import jax.numpy as jnp
import numpy as np
@trace("multiply_add_numpy")
def multiply_add_numpy(x, y, z):
return jnp.add(jnp.multiply(x, y), z)
@trace("square_add_numpy")
def square_add_numpy(a, b):
return multiply_add_numpy(a, a, b)
print("\nNormal evaluation:")
print("square_add_numpy = ", square_add_numpy(2., 10.))
print("\nGradient evaluation:")
print("grad(square_add_numpy) = ", api.grad(square_add_numpy)(2.0, 10.))
+++ {"id": "Sg-D8EdeFn4a"}
Notice that in the process of computing grad
, JAX invokes square_add_numpy
and
multiply_add_numpy
with special arguments ConcreteArray(...)
(described further
below in this colab).
It is important to remember that a JAX-traceable function must be able to
operate not only on concrete arguments but also on special abstract arguments
that JAX may use to abstract the function execution.
The JAX traceability property is satisfied as long as the function is written in terms of JAX primitives.
+++ {"id": "WxrQO7-XGLcg"}
The right way to add support for multiply-add is in terms of existing JAX primitives, as shown above. However, in order to demonstrate how JAX primitives work let us pretend that we want to add a new primitive to JAX for the multiply-add functionality.
:id: cPqAH1XOGTN4
from jax import core
multiply_add_p = core.Primitive("multiply_add") # Create the primitive
@trace("multiply_add_prim")
def multiply_add_prim(x, y, z):
"""The JAX-traceable way to use the JAX primitive.
Note that the traced arguments must be passed as positional arguments
to `bind`.
"""
return multiply_add_p.bind(x, y, z)
@trace("square_add_prim")
def square_add_prim(a, b):
"""A square-add function implemented using the new JAX-primitive."""
return multiply_add_prim(a, a, b)
+++ {"id": "LMzs5PAKGr-4"}
If we try to call the newly defined functions we get an error, because we have not yet told JAX anything about the semantics of the new primitive.
:id: _X3PAYxhGpWd
:outputId: 90ea2c6a-9ef3-40ea-e9a3-3ab1cfc59fc8
with expectNotImplementedError():
square_add_prim(2., 10.)
+++ {"id": "elha0FdgHSEF"}
:id: FT34FFAGHARU
:outputId: 4c54f1c2-8a50-4788-90e1-06aee412c43b
@trace("multiply_add_impl")
def multiply_add_impl(x, y, z):
"""Concrete implementation of the primitive.
This function does not need to be JAX traceable.
Args:
x, y, z: the concrete arguments of the primitive. Will only be called with
concrete values.
Returns:
the concrete result of the primitive.
"""
# Note that we can use the original numpy, which is not JAX traceable
return np.add(np.multiply(x, y), z)
# Now we register the primal implementation with JAX
multiply_add_p.def_impl(multiply_add_impl)
:id: G5bstKaeNAVV
:outputId: deb94d5b-dfea-4e6f-9ec2-70b416c996c5
assert square_add_prim(2., 10.) == 14.
+++ {"id": "upBf-uAuHhPJ"}
If we now try to use jit
we get a NotImplementedError
:
:id: QG-LULjiHk4b
:outputId: d4ef4406-8dae-4c96-97ca-b662340474ee
with expectNotImplementedError():
api.jit(square_add_prim)(2., 10.)
+++ {"id": "rHS1bAGHH44E"}
In order to JIT the function, and for other transformations as well, JAX first evaluates it abstractly using only the shape and type of the arguments. This abstract evaluation serves multiple purposes:
- Gets the sequence of JAX primitives that are used in the computation. This sequence will be compiled.
- Computes the shape and type of all vectors and operations used in the computation.
For example, the abstraction of a vector with 3 elements may be ShapedArray(float32[3])
, or ConcreteArray([1., 2., 3.])
.
In the latter case, JAX uses the actual concrete value wrapped as an abstract value.
:id: ctQmEeckIbdo
:outputId: e751d0cc-460e-4ffd-df2e-fdabf9cffdc2
from jax import core
@trace("multiply_add_abstract_eval")
def multiply_add_abstract_eval(xs, ys, zs):
"""Abstract evaluation of the primitive.
This function does not need to be JAX traceable. It will be invoked with
abstractions of the actual arguments.
Args:
xs, ys, zs: abstractions of the arguments.
Result:
a ShapedArray for the result of the primitive.
"""
assert xs.shape == ys.shape
assert xs.shape == zs.shape
return core.ShapedArray(xs.shape, xs.dtype)
# Now we register the abstract evaluation with JAX
multiply_add_p.def_abstract_eval(multiply_add_abstract_eval)
+++ {"id": "RPN88X6YI43A"}
If we re-attempt to JIT, we see how the abstract evaluation proceeds, but we get another error, about missing the actual XLA compilation rule:
:id: eOcNR92SI2h-
:outputId: 356ef229-3703-4696-cc3d-7c05de405fb0
with expectNotImplementedError():
api.jit(square_add_prim)(2., 10.)
+++ {"id": "9IOV1R-fJMHp"}
JAX compilation works by compiling each primitive into a graph of XLA operations.
This is the biggest hurdle to adding new functionality to JAX, because the
set of XLA operations is limited, and JAX already has pre-defined primitives
for most of them. However, XLA includes a CustomCall
operation that can be used to encapsulate arbitrary functionality defined using C++.
:id: FYQWSSjKJaWP
from jax._src.lib.mlir.dialects import hlo
@trace("multiply_add_lowering")
def multiply_add_lowering(ctx, xc, yc, zc):
"""The compilation to XLA of the primitive.
Given an mlir.ir.Value for each argument, return the mlir.ir.Values for
the results of the function.
Does not need to be a JAX-traceable function.
"""
return [hlo.AddOp(hlo.MulOp(xc, yc), zc).result]
# Now we register the lowering rule with JAX
# For GPU see the [Custom operations for GPUs](https://jax.readthedocs.io/en/latest/Custom_Operation_for_GPUs.html)
# TODO: TPU?
from jax.interpreters import mlir
mlir.register_lowering(multiply_add_p, multiply_add_lowering, platform='cpu')
+++ {"id": "K98LX-VaJkFu"}
Now we succeed to JIT. Notice below that JAX first evaluates the function
abstractly, which triggers the multiply_add_abstract_eval
function, and
then compiles the set of primitives it has encountered, including multiply_add
.
At this point JAX invokes multiply_add_xla_translation
.
:id: rj3TLsolJgEc
:outputId: e384bee4-1e9c-4344-f49c-d3b5ec08eb32
assert api.jit(lambda x, y: square_add_prim(x, y))(2., 10.) == 14.
+++ {"id": "Omrez-2_KFfo"}
Below is another use of jit
where we compile only
with respect to the first argument. Notice how the second argument to square_add_prim
is concrete, which leads
in the third argument to multiply_add_abstract_eval
being
ConcreteArray
. We see that multiply_add_abstract_eval
may be used with
both ShapedArray
and ConcreteArray
.
:id: mPfTwIBoKOEK
:outputId: b293b9b6-a2f9-48f5-f7eb-d4f99c3d905b
assert api.jit(lambda x, y: square_add_prim(x, y),
static_argnums=1)(2., 10.) == 14.
+++ {"id": "_Ya3B5l4J1VA"}
JAX implements forward differentiation in the form of a Jacobian-vector product (see the JAX autodiff cookbook).
If we attempt now to compute the jvp
function we get an
error because we have not yet told JAX how to differentiate
the multiply_add
primitive.
:id: OxDx6NQnKwMI
:outputId: ce659ef3-c03c-4856-f252-49ec4b6eb964
# The second argument `(2., 10.)` are the argument values
# where we evaluate the Jacobian, and the third `(1., 1.)`
# are the values of the tangents for the arguments.
with expectNotImplementedError():
api.jvp(square_add_prim, (2., 10.), (1., 1.))
:id: zxG24C1JMIMM
from jax.interpreters import ad
@trace("multiply_add_value_and_jvp")
def multiply_add_value_and_jvp(arg_values, arg_tangents):
"""Evaluates the primal output and the tangents (Jacobian-vector product).
Given values of the arguments and perturbation of the arguments (tangents),
compute the output of the primitive and the perturbation of the output.
This method must be JAX-traceable. JAX may invoke it with abstract values
for the arguments and tangents.
Args:
arg_values: a tuple of arguments
arg_tangents: a tuple with the tangents of the arguments. The tuple has
the same length as the arg_values. Some of the tangents may also be the
special value ad.Zero to specify a zero tangent.
Returns:
a pair of the primal output and the tangent.
"""
x, y, z = arg_values
xt, yt, zt = arg_tangents
_trace("Primal evaluation:")
# Now we have a JAX-traceable computation of the output.
# Normally, we can use the ma primitive itself to compute the primal output.
primal_out = multiply_add_prim(x, y, z)
_trace("Tangent evaluation:")
# We must use a JAX-traceable way to compute the tangent. It turns out that
# the output tangent can be computed as (xt * y + x * yt + zt),
# which we can implement in a JAX-traceable way using the same "multiply_add_prim" primitive.
# We do need to deal specially with Zero. Here we just turn it into a
# proper tensor of 0s (of the same shape as 'x').
# An alternative would be to check for Zero and perform algebraic
# simplification of the output tangent computation.
def make_zero(tan):
return lax.zeros_like_array(x) if type(tan) is ad.Zero else tan
output_tangent = multiply_add_prim(make_zero(xt), y, multiply_add_prim(x, make_zero(yt), make_zero(zt)))
return (primal_out, output_tangent)
# Register the forward differentiation rule with JAX
ad.primitive_jvps[multiply_add_p] = multiply_add_value_and_jvp
:id: ma3KBkiAMfW1
:outputId: f34cbbc6-20d9-48ca-9a9a-b5d91a972cdd
# Tangent is: xt*y + x*yt + zt = 1.*2. + 2.*1. + 1. = 5.
assert api.jvp(square_add_prim, (2., 10.), (1., 1.)) == (14., 5.)
+++ {"id": "69QsEcu-lP4u"}
TO EXPLAIN:
- Why is JAX using ConcreteArray in square_add_prim? There is no abstract evaluation going on here.
- Not sure how to explain that multiply_add_prim is invoked with ConcreteValue, yet we do not call the multiply_add_abstract_eval.
- I think it would be useful to show the jaxpr here
+++ {"id": "Sb6e3ZAHOPHv"}
We can apply JIT to the forward differentiation function:
:id: hg-hzVu-N-hv
:outputId: 38d32067-e152-4046-ad80-7f95a31ba628
assert api.jit(lambda arg_values, arg_tangents:
api.jvp(square_add_prim, arg_values, arg_tangents))(
(2., 10.), (1., 1.)) == (14., 5.)
+++ {"id": "jlZt1_v2mU88"}
Notice that first we evaluate multiply_add_value_and_jvp
abstractly, which in turn
evaluates abstractly both the primal and the tangent evaluation (a total of
3 invocations of the ma
primitive). Then we compile the 3 occurrences
of the primitive.
+++ {"id": "555yt6ZIOePB"}
If we attempt now to use reverse differentiation we
see that JAX starts by using the multiply_add_value_and_jvp
to
compute the forward differentiation for abstract values, but then runs
into a NotImplementedError
.
When computing the reverse differentiation JAX first does abstract evaluation
of the forward differentiation code multiply_add_value_and_jvp
to obtain a
trace of primitives that compute the output tangent.
Observe that JAX performs this abstract evaluation with concrete values
for the differentiation point, and abstract values for the tangents.
Observe also that JAX uses the special abstract tangent value Zero
for
the tangent corresponding to the 3rd argument of ma
. This reflects the
fact that we do not differentiate w.r.t. the 2nd argument to square_add_prim
,
which flows to the 3rd argument to multiply_add_prim
.
Observe also that during the abstract evaluation of the tangent we pass the
value 0.0 as the tangent for the 3rd argument. This is due to the use
of the make_zero
function in the definition of multiply_add_value_and_jvp
.
:id: 8eAVnexaOjBn
:outputId: e4ee89cf-ab4a-4505-9817-fa978a2865ab
# This is reverse differentiation w.r.t. the first argument of square_add_prim
with expectNotImplementedError():
api.grad(square_add_prim)(2., 10.)
+++ {"id": "fSHLUMDN26AY"}
The above error is because there is a missing piece for JAX to be able to use the forward differentiation code to compute reverse differentiation.
+++ {"id": "3ibDbGF-PjK9"}
As explained above, when computing reverse differentiation JAX obtains a trace of primitives that compute the tangent using forward differentiation. Then, JAX interprets this trace abstractly backwards and for each primitive it applies a transposition rule.
To understand what is going on, consider for now a simpler example of the function "f(x, y) = x * y + y". Assume we need to differentiate at the point (2., 4.)
. JAX will produce the following JVP tangent calculation of ft
from the tangents of the input xt
and yt
:
a = xt * 4.
b = 2. * yt
c = a + b
ft = c + yt
By construction, the tangent calculation is always linear in the input tangents. The only non-linear operator that may arise in the tangent calculation is multiplication, but then one of the operands is constant.
JAX will produce the reverse differentiation computation by processing the JVP computation backwards. For each operation in the tangent computation, it accumulates the cotangents of the variables used by the operation, using the cotangent of the result of the operation:
# Initialize cotangents of inputs and intermediate vars
xct = yct = act = bct = cct = 0.
# Initialize cotangent of the output
fct = 1.
# Process "ft = c + yt"
cct += fct
yct += fct
# Process "c = a + b"
act += cct
bct += cct
# Process "b = 2. * yt"
yct += 2. * bct
# Process "a = xt * 4."
xct += act * 4.
One can verify that this computation produces xct = 4.
and yct = 3.
, which
are the partial derivatives of the function f
.
JAX knows for each primitive that may appear in a JVP calculation how to transpose it. Conceptually, if the primitive p(x, y, z)
is linear in the arguments y
and z
for a constant value of x
, e.g., p(x, y, z) = y*cy + z*cz
, then the transposition of the primitive is:
p_transpose(out_ct, x, _, _) = (None, out_ct*cy, out_ct*cz)
Notice that p_transpose
takes the cotangent of the output of the primitive and a value corresponding to each argument of the primitive. For the linear arguments, the transposition gets an undefined _
value, and for the other
arguments it gets the actual constants. The transposition returns a cotangent value for each argument of the primitive, with the value None
returned
for the constant arguments.
In particular,
add_transpose(out_ct, _, _) = (out_ct, out_ct)
mult_transpose(out_ct, x, _) = (None, x * out_ct)
mult_transpose(out_ct, _, y) = (out_ct * y, None)
:id: JaHxFdkRO42r
@trace("multiply_add_transpose")
def multiply_add_transpose(ct, x, y, z):
"""Evaluates the transpose of a linear primitive.
This method is only used when computing the backward gradient following
value_and_jvp, and is only needed for primitives that are used in the JVP
calculation for some other primitive. We need transposition for multiply_add_prim,
because we have used multiply_add_prim in the computation of the output_tangent in
multiply_add_value_and_jvp.
In our case, multiply_add is not a linear primitive. However, it is used linearly
w.r.t. tangents in multiply_add_value_and_jvp:
output_tangent(xt, yt, zt) = multiply_add_prim(xt, y, multiply_add_prim(x, yt, zt))
Always one of the first two multiplicative arguments is a constant.
Args:
ct: the cotangent of the output of the primitive.
x, y, z: values of the arguments. The arguments that are used linearly
get an ad.UndefinedPrimal value. The other arguments get a constant
value.
Returns:
a tuple with the cotangent of the inputs, with the value None
corresponding to the constant arguments.
"""
if not ad.is_undefined_primal(x):
# This use of multiply_add is with a constant "x"
assert ad.is_undefined_primal(y)
ct_y = ad.Zero(y.aval) if type(ct) is ad.Zero else multiply_add_prim(x, ct, lax.zeros_like_array(x))
res = None, ct_y, ct
else:
# This use of multiply_add is with a constant "y"
assert ad.is_undefined_primal(x)
ct_x = ad.Zero(x.aval) if type(ct) is ad.Zero else multiply_add_prim(ct, y, lax.zeros_like_array(y))
res = ct_x, None, ct
return res
ad.primitive_transposes[multiply_add_p] = multiply_add_transpose
+++ {"id": "PpChox-Jp7wb"}
Now we can complete the run of the grad
:
:id: PogPKS4MPevd
:outputId: d33328d4-3e87-45b5-9b31-21ad624b67af
assert api.grad(square_add_prim)(2., 10.) == 4.
+++ {"id": "8M1xLCXW4fK7"}
Notice the two calls to multiply_add_transpose
. They correspond to the two
uses of multiply_add_prim
in the computation of the output_tangent
in multiply_add_value_and_jvp
. The first call to transpose corresponds to the
last use of multiply_add_prim
: multiply_add_prim(xt, y, ...)
where y
is the constant 2.0.
+++ {"id": "EIJs6FYmPg6c"}
Notice that the abstract evaluation of the multiply_add_value_and_jvp
is using only
abstract values, while in the absence of JIT we used ConcreteArray
.
:id: FZ-JGbWZPq2-
:outputId: e42b5222-9c3e-4853-e13a-874f6605d178
assert api.jit(api.grad(square_add_prim))(2., 10.) == 4.
+++ {"id": "-3lqPkdQPvl5"}
The batching transformation takes a point-wise computation and turns it
into a computation on vectors. If we try it right now, we get a NotImplementedError
:
:id: hFvBR3I9Pzh3
:outputId: 434608bc-281f-4d3b-83bd-eaaf3b51b1cd
# The arguments are two vectors instead of two scalars
with expectNotImplementedError():
api.vmap(square_add_prim, in_axes=0, out_axes=0)(np.array([2., 3.]),
np.array([10., 20.]))
+++ {"id": "gILasMiP6elR"}
We need to tell JAX how to evaluate the batched version of the primitive. In this particular case, the multiply_add_prim
already operates pointwise for any dimension of input vectors. So the batched version can use the same multiply_add_prim
implementation.
:id: KQfeqRIrP7zg
from jax.interpreters import batching
@trace("multiply_add_batch")
def multiply_add_batch(vector_arg_values, batch_axes):
"""Computes the batched version of the primitive.
This must be a JAX-traceable function.
Since the multiply_add primitive already operates pointwise on arbitrary
dimension tensors, to batch it we can use the primitive itself. This works as
long as both the inputs have the same dimensions and are batched along the
same axes. The result is batched along the axis that the inputs are batched.
Args:
vector_arg_values: a tuple of two arguments, each being a tensor of matching
shape.
batch_axes: the axes that are being batched. See vmap documentation.
Returns:
a tuple of the result, and the result axis that was batched.
"""
assert batch_axes[0] == batch_axes[1]
assert batch_axes[0] == batch_axes[2]
_trace("Using multiply_add to compute the batch:")
res = multiply_add_prim(*vector_arg_values)
return res, batch_axes[0]
batching.primitive_batchers[multiply_add_p] = multiply_add_batch
:id: VwxNk869P_YG
:outputId: 9d22c921-5803-4d33-9e88-b6e439ba9738
assert np.allclose(api.vmap(square_add_prim, in_axes=0, out_axes=0)(
np.array([2., 3.]),
np.array([10., 20.])),
[14., 29.])
+++ {"id": "NmqLlV1TQDCC"}
:id: xqEdXVUgQCTt
:outputId: 9c22fd9c-919c-491d-bbeb-32c241b808fa
assert np.allclose(api.jit(api.vmap(square_add_prim, in_axes=0, out_axes=0))
(np.array([2., 3.]),
np.array([10., 20.])),
[14., 29.])