-
-
Notifications
You must be signed in to change notification settings - Fork 1.7k
/
Copy pathmodel.py
42 lines (29 loc) · 1.18 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
import torch
from . import initialization as init
class SegmentationModel(torch.nn.Module):
def initialize(self):
init.initialize_decoder(self.decoder)
init.initialize_head(self.segmentation_head)
if self.classification_head is not None:
init.initialize_head(self.classification_head)
def forward(self, x):
"""Sequentially pass `x` trough model`s encoder, decoder and heads"""
features = self.encoder(x)
decoder_output = self.decoder(*features)
masks = self.segmentation_head(decoder_output)
if self.classification_head is not None:
labels = self.classification_head(features[-1])
return masks, labels
return masks
def predict(self, x):
"""Inference method. Switch model to `eval` mode, call `.forward(x)` with `torch.no_grad()`
Args:
x: 4D torch tensor with shape (batch_size, channels, height, width)
Return:
prediction: 4D torch tensor with shape (batch_size, classes, height, width)
"""
if self.training:
self.eval()
with torch.no_grad():
x = self.forward(x)
return x