forked from Xilinx/finn-hlslib
-
Notifications
You must be signed in to change notification settings - Fork 0
/
slidingwindow.h
executable file
·898 lines (872 loc) · 37.8 KB
/
slidingwindow.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
/******************************************************************************
* Copyright (c) 2019, Xilinx, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION). HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
* ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*******************************************************************************/
/******************************************************************************
*
* Authors: Giulio Gambardella <[email protected]>
* Thomas B. Preusser <[email protected]>
* Marie-Curie Fellow, Xilinx Ireland, Grant Agreement No. 751339
* Christoph Doehring <[email protected]>
*
* \file slidingwindow.h
*
* Library of templated HLS functions for BNN deployment.
* This file lists a set of convenience funtions used to implement
* Sliding window generator for convolutions
*
*****************************************************************************/
#ifndef SLIDINGWINDOW_H
#define SLIDINGWINDOW_H
#include "utils.hpp"
#define MAX(x, y) (((x) > (y)) ? (x) : (y)) /* \brief Maximum value between x and y*/
#define MIN(x, y) (((x) > (y)) ? (y) : (x)) /* !< \brief Minimum value between x and y*/
/**
* \brief Memory resource pragma instantiation for the sliding window generator, default resource
*
* The buffer in the sliding window generator can be implemented in multiple hardware resources.
*
* ap_resource_dflt will let HLS choose the best one
* ap_resource_bram will force HLS to implement the buffer in BRAMs
* ap_resource_uram will force HLS to implement the buffer in URAMs
* ap_resource_lutram will force HLS to implement the buffer in LUTRAMs
*
* \tparam T Datatype of the buffer instantiated in the sliding window generator
*
* \param inputBuf Buffer used in the SWG
* \param r Resource type for the hardware implementation
*
* \return Result of the multiply operation
*/
template <typename T>
void memory_resource(T inputBuf, ap_resource_dflt const&){
#pragma HLS inline
#pragma HLS RESOURCE variable=inputBuf core=RAM_2P
}
/**
* \brief Memory resource pragma instantiation for the sliding window generator, BRAM resource
*
* The buffer in the sliding window generator can be implemented in multiple hardware resources.
*
* ap_resource_dflt will let HLS choose the best one
* ap_resource_bram will force HLS to implement the buffer in BRAMs
* ap_resource_uram will force HLS to implement the buffer in URAMs
* ap_resource_lutram will force HLS to implement the buffer in LUTRAMs
*
* \tparam T Datatype of the buffer instantiated in the sliding window generator
*
* \param inputBuf Buffer used in the SWG
* \param r Resource type for the hardware implementation
*
* \return Result of the multiply operation
*/
template <typename T>
void memory_resource(T inputBuf, ap_resource_bram const&){
#pragma HLS inline
#pragma HLS RESOURCE variable=inputBuf core=RAM_S2P_BRAM
}
/**
* \brief Memory resource pragma instantiation for the sliding window generator, URAM resource
*
* The buffer in the sliding window generator can be implemented in multiple hardware resources.
*
* ap_resource_dflt will let HLS choose the best one
* ap_resource_bram will force HLS to implement the buffer in BRAMs
* ap_resource_uram will force HLS to implement the buffer in URAMs
* ap_resource_lutram will force HLS to implement the buffer in LUTRAMs
*
* \tparam T Datatype of the buffer instantiated in the sliding window generator
*
* \param inputBuf Buffer used in the SWG
* \param r Resource type for the hardware implementation
*
* \return Result of the multiply operation
*/
template <typename T>
void memory_resource(T inputBuf, ap_resource_uram const&){
#pragma HLS inline
#pragma HLS RESOURCE variable=inputBuf core=RAM_S2P_URAM
}
/**
* \brief Memory resource pragma instantiation for the sliding window generator, LUTRAM resource
*
* The buffer in the sliding window generator can be implemented in multiple hardware resources.
*
* ap_resource_dflt will let HLS choose the best one
* ap_resource_bram will force HLS to implement the buffer in BRAMs
* ap_resource_uram will force HLS to implement the buffer in URAMs
* ap_resource_lutram will force HLS to implement the buffer in LUTRAMs
*
* \tparam T Datatype of the buffer instantiated in the sliding window generator
*
* \param inputBuf Buffer used in the SWG
* \param r Resource type for the hardware implementation
*
* \return Result of the multiply operation
*/
template <typename T>
void memory_resource(T inputBuf, ap_resource_lutram const&){
#pragma HLS inline
#pragma HLS RESOURCE variable=inputBuf core=RAM_S2P_LUTRAM
}
/**
* \brief Sliding Window unit that produces output vectors for feeding
* a Matrix_Vector_Activate_Batch, implementing the im2col algorithm. To be used only if
* ConvKernelDim%Stride = 0
*
* \tparam ConvKernelDim Dimension of the convolutional kernel (assumed square)
* \tparam IFMChannels Number of Input Feature Maps
* \tparam Input_precision Number bits per pixel
* \tparam IFMDim Width and Heigth of the Input Feature Map (assumed square)
* \tparam OFMDim Width and Heigth of the Output Feature Map (assumed square)
* \tparam SIMD Number of input columns computed in parallel
* \tparam Stride Stride of the convolutional kernel
* \tparam R Datatype for the resource used for FPGA implementation of the SWG - safely deducible from the paramaters
*
* \param in Input stream
* \param out Output stream
* \param numReps Number of time the function has to be repeatedly executed (e.g. number of images)
* \param r Resource type for the hardware implementation of the memory block
*/
template<unsigned int ConvKernelDim,
unsigned int IFMChannels,
unsigned int Input_precision,
unsigned int IFMDim,
unsigned int OFMDim,
unsigned int SIMD,
unsigned int Stride,
typename R>
void ConvolutionInputGenerator(
stream<ap_uint<SIMD*Input_precision> > & in,
stream<ap_uint<SIMD*Input_precision> > & out,
const unsigned int numReps,
R const &r) {
CASSERT_DATAFLOW(IFMChannels % SIMD == 0);
CASSERT_DATAFLOW(ConvKernelDim % Stride == 0);
const unsigned int multiplying_factor = IFMChannels/SIMD;
const unsigned int number_blocks = ConvKernelDim/Stride + 1 ;
ap_uint<SIMD*Input_precision> inputBuf[number_blocks][Stride * IFMDim * multiplying_factor];
#pragma HLS ARRAY_PARTITION variable=inputBuf complete dim=1
memory_resource(inputBuf, r);
const unsigned int cycles_write_block = (OFMDim * ConvKernelDim * ConvKernelDim * multiplying_factor);
const unsigned int cycles_read_block = Stride * IFMDim * multiplying_factor;
const unsigned int max_cycles = MAX(cycles_write_block,cycles_read_block);
const unsigned int baseIter = IFMDim * ConvKernelDim * multiplying_factor// Initial buffer
+ OFMDim * MAX(cycles_write_block,cycles_read_block);
unsigned int counter_internal_block = 0;
unsigned int current_block_write = 0;
unsigned int next_block_write = 0;
unsigned int current_line = 0;
unsigned int read_block = 0;
unsigned int inp = 0, ofm_y = 0, ofm_x = 0, k_y = 0, k_x = 0, count_simd =0;
#pragma HLS reset variable=inp
for (unsigned int count_image = 0; count_image < numReps; count_image++) {
for (unsigned int i = 0; i < baseIter; i++) {
#pragma HLS PIPELINE II=1
if (inp < IFMDim * ConvKernelDim*multiplying_factor) {// Initial buffer of ConvKernelDim lines
ap_uint<SIMD*Input_precision> inElem;
inElem = in.read();
inputBuf[current_block_write][current_line] = inElem;
current_line++;
inp++;
if (current_line == Stride * IFMDim * multiplying_factor ) {
current_line = 0;
current_block_write++;
if (current_block_write == number_blocks) {
current_block_write=0;
}
read_block++;
counter_internal_block = 0;
}
} else {
if (counter_internal_block < cycles_write_block-1) { // We are writing output, MMV IFMChan per cycle
unsigned int current_block_read = (current_block_write + 1 + k_y / Stride);
if (current_block_read >= number_blocks) {
current_block_read-= number_blocks;
}
unsigned int current_line_in_block = ((k_y%Stride) * IFMDim + ofm_x*Stride + k_x)*multiplying_factor + count_simd;
ap_uint<SIMD*Input_precision> outElem = inputBuf[current_block_read][(current_line_in_block)];
out.write(outElem);
count_simd++;
if (count_simd == multiplying_factor) {
count_simd=0;
k_x++;
if (k_x == ConvKernelDim) {
k_x = 0;
k_y++;
if (k_y == ConvKernelDim) {
k_y = 0;
ofm_x ++;
if (ofm_x == OFMDim) {
ofm_x = 0;
ofm_y++;
if (ofm_y == OFMDim) {
ofm_y = 0;
inp = 0;
}
}
}
}
}
}
if ((counter_internal_block < cycles_read_block-1) && (read_block<IFMDim/Stride)) { // In parallel we write in the buffer, in the current block write if we still need to
ap_uint<SIMD*Input_precision> inElem;
inElem = in.read();
inputBuf[current_block_write][current_line] = inElem;
#pragma AP dependence variable=inputBuf intra false
#pragma AP dependence variable=inputBuf inter false
current_line++;
if (current_line == Stride * IFMDim * multiplying_factor) {// We read the whole block, we change the next block in which we want to we
// We filled up a block, let's not read until
current_line = 0;
read_block++;
current_block_write++;
if (current_block_write == number_blocks) {
current_block_write=0;
}
#pragma AP dependence variable=current_block_write intra false
}
}
counter_internal_block++; // = (counter_internal_block +1) % max_cycles;
if (counter_internal_block == (max_cycles-1)) {
counter_internal_block = 0;
}
}
} // End base_iter
read_block = 0;
} // End count_image
} // End generator
/**
* \brief Sliding Window unit that produces output vectors for feeding
* a Matrix_Vector_Activate_Batch, implementing the im2col algorithm with support to multiple output pixels
*
*
* \tparam ConvKernelDim Dimension of the convolutional kernel (assumed square)
* \tparam IFMChannels Number of Input Feature Maps
* \tparam Input_precision Number bits per pixel
* \tparam IFMDim Width and Heigth of the Input Feature Map (assumed square)
* \tparam OFMDim Width and Heigth of the Output Feature Map (assumed square)
* \tparam SIMD Number of input columns computed in parallel
* \tparam Stride Stride of the convolutional kernel
* \tparam MMV Number of pixels that have to be produced in parallel
* \tparam R Datatype for the resource used for FPGA implementation of the SWG - safely deducible from the paramaters
*
* \param in Input stream
* \param out Output stream
* \param numReps Number of time the function has to be repeatedly executed (e.g. number of images)
* \param r Resource type for the hardware implementation of the memory block
*/
template<unsigned int ConvKernelDim,
unsigned int IFMChannels,
unsigned int Input_precision,
unsigned int IFMDim,
unsigned int OFMDim,
unsigned int SIMD,
unsigned int Stride,
unsigned int MMV,
typename R>
void ConvolutionInputGenerator_MMV(
stream<ap_uint<SIMD*Input_precision> > & in,
stream<MultiChanData<MMV, SIMD*Input_precision> > & out,
const unsigned int numReps,
R const &r) {
CASSERT_DATAFLOW(IFMChannels % SIMD == 0);
CASSERT_DATAFLOW(OFMDim % MMV == 0);
CASSERT_DATAFLOW(ConvKernelDim % Stride == 0);
CASSERT_DATAFLOW(MMV <= OFMDim);
constexpr unsigned int multiplying_factor = IFMChannels/SIMD;
constexpr unsigned int number_blocks = ConvKernelDim/Stride + 1 ;
ap_uint<SIMD*Input_precision> inputBuf[MMV][number_blocks][Stride * IFMDim * multiplying_factor];
#pragma HLS DEPENDENCE variable=inputBuf inter false
#pragma HLS DEPENDENCE variable=inputBuf intra false
#pragma HLS ARRAY_PARTITION variable=inputBuf complete dim=1
#pragma HLS ARRAY_PARTITION variable=inputBuf complete dim=2
memory_resource(inputBuf, r);
constexpr unsigned int cycles_write_block = (OFMDim * ConvKernelDim * ConvKernelDim * multiplying_factor)/MMV;
constexpr unsigned int cycles_read_block = Stride * IFMDim * multiplying_factor;
constexpr unsigned int max_cycles = MAX(cycles_write_block,cycles_read_block);
const unsigned int baseIter = IFMDim * ConvKernelDim * multiplying_factor// Initial buffer
+ OFMDim * MAX(cycles_write_block,cycles_read_block);
unsigned int counter_internal_block = 0;
unsigned int current_block_write = 0;
unsigned int next_block_write = 0;
unsigned int current_line = 0;
unsigned int read_block = 0;
unsigned int inp = 0, ofm_y = 0, ofm_x = 0, k_y = 0, k_x = 0, count_simd =0;
#pragma HLS reset variable=inp
for (unsigned int count_image = 0; count_image < numReps; count_image++) {
for (unsigned int i = 0; i < baseIter; i++) {
#pragma HLS PIPELINE II=1
if (inp < IFMDim * ConvKernelDim*multiplying_factor) // Initial buffer of ConvKernelDim lines
{
ap_uint<SIMD*Input_precision> inElem;
inElem = in.read();
for(unsigned int v = 0; v < MMV; v++)
{
#pragma HLS UNROLL
inputBuf[v][current_block_write][current_line] = inElem;
}
current_line++;
inp++;
if (current_line == Stride * IFMDim * multiplying_factor )
{
current_line = 0;
current_block_write++;
if (current_block_write == number_blocks)
current_block_write=0;
read_block++;
counter_internal_block = 0;
}
}
else
{
if (counter_internal_block < cycles_write_block-1) // We are writing output, MMV IFMChan per cycle
{
unsigned int current_block_read = (current_block_write + 1 + k_y / Stride);
if (current_block_read >= number_blocks)
current_block_read-= number_blocks;
unsigned int current_line_in_block = ((k_y%Stride) * IFMDim + ofm_x*Stride + k_x)*multiplying_factor + count_simd;
MultiChanData<MMV, SIMD*Input_precision> outElem;
// parallel read from all input buffers
for(unsigned int v = 0; v < MMV; v++) {
#pragma HLS UNROLL
// each buffer's read addr is offset by its buffer index
ap_uint<SIMD*Input_precision> temp_value = inputBuf[v][current_block_read][(current_line_in_block + v*Stride*multiplying_factor)];
outElem.data[v] = temp_value;
}
out.write(outElem);
count_simd++;
if (count_simd == multiplying_factor) {
count_simd=0;
k_x++;
if (k_x == ConvKernelDim) {
k_x = 0;
k_y++;
if (k_y == ConvKernelDim) {
k_y = 0;
ofm_x += MMV;
if (ofm_x == OFMDim) {
ofm_x = 0;
ofm_y++;
if (ofm_y == OFMDim) {
ofm_y = 0;
inp = 0;
}
}
}
}
}
}
if ((counter_internal_block < cycles_read_block-1) && (read_block<IFMDim/Stride)) // In parallel we write in the buffer, in the current block write if we still need to
{
ap_uint<SIMD*Input_precision> inElem;
inElem = in.read();
for(unsigned int v = 0; v < MMV; v++) {
#pragma HLS UNROLL
inputBuf[v][current_block_write][current_line] = inElem;
#pragma AP dependence variable=inputBuf intra false
#pragma AP dependence variable=inputBuf inter false
}
current_line++;
if (current_line == Stride * IFMDim * multiplying_factor) // We read the whole block, we change the next block in which we want to we
{ // We filled up a block, let's not read until
current_line = 0;
read_block++;
current_block_write++;
if (current_block_write == number_blocks)
current_block_write=0;
#pragma AP dependence variable=current_block_write intra false
}
}
counter_internal_block++; // = (counter_internal_block +1) % max_cycles;
if (counter_internal_block == (max_cycles-1))
{
counter_internal_block = 0;
}
}
} // End base_iter
read_block = 0;
} // End count_image
} // End generator
/**
* \brief Sliding Window unit that produces output vectors for feeding
* a Matrix_Vector_Activate_Batch, implementing the im2col algorithm. To be used when
* ConvKernelDim%Stride != 0 (e.g., Kernel=3, Stride=2)
*
* \tparam ConvKernelDim Dimension of the convolutional kernel (assumed square)
* \tparam IFMChannels Number of Input Feature Maps
* \tparam Input_precision Number bits per pixel
* \tparam IFMDim Width and Heigth of the Input Feature Map (assumed square)
* \tparam OFMDim Width and Heigth of the Output Feature Map (assumed square)
* \tparam SIMD Number of input columns computed in parallel
* \tparam Stride Stride of the convolutional kernel
* \tparam R Datatype for the resource used for FPGA implementation of the SWG - safely deducible from the paramaters
*
* \param in Input stream
* \param out Output stream
* \param numReps Number of time the function has to be repeatedly executed (e.g. number of images)
* \param r Resource type for the hardware implementation of the memory block
*/
template<unsigned int ConvKernelDim,
unsigned int IFMChannels,
unsigned int Input_precision,
unsigned int IFMDim,
unsigned int OFMDim,
unsigned int SIMD,
unsigned int Stride,
typename R>
void ConvolutionInputGenerator_kernel_stride(
stream<ap_uint<SIMD*Input_precision> > & in,
stream<ap_uint<SIMD*Input_precision> > & out,
const unsigned int numReps,
R const &r) {
CASSERT_DATAFLOW(IFMChannels % SIMD == 0);
CASSERT_DATAFLOW(ConvKernelDim % Stride != 0);
const unsigned int multiplying_factor = IFMChannels/SIMD;
const unsigned int number_blocks = ConvKernelDim + Stride ;
ap_uint<SIMD*Input_precision> inputBuf[number_blocks][IFMDim * multiplying_factor];
#pragma HLS ARRAY_PARTITION variable=inputBuf complete dim=1
memory_resource(inputBuf, r);
const unsigned int cycles_write_block = OFMDim * ConvKernelDim * ConvKernelDim * multiplying_factor;
const unsigned int cycles_read_block = IFMDim * Stride * multiplying_factor;
const unsigned int max_cycles = MAX(cycles_write_block, cycles_read_block);
const unsigned int baseIter = (IFMDim * ConvKernelDim * multiplying_factor) + (OFMDim-1) * max_cycles+MAX(cycles_write_block,OFMDim);
const unsigned int initial_buffer_cycles = (IFMDim * ConvKernelDim * multiplying_factor) ;
unsigned int counter_internal_block = 0;
unsigned int next_block_write = 0;
unsigned int current_line = 0;
unsigned int inp = 0, ofm_y = 0, ofm_x = 0, k_y = 0, k_x = 0, current_k_y = 0, count_simd =0;
#pragma HLS RESET variable=inp
#pragma HLS DEPENDENCE variable=inputBuf inter false
#pragma HLS DEPENDENCE variable=inputBuf intra false
// #pragma HLS RESOURCE variable inputBuf core=RAM_2P_LUTRAM
for (unsigned int count_image = 0; count_image < numReps; count_image++) {
unsigned int floor_block_read = 0, ceil_block_read = number_blocks;
unsigned int current_block_write = 0;
#pragma HLS DEPENDENCE variable=current_block_write intra false
unsigned int read_block = 0;
for (unsigned int i = 0; i < baseIter; i++) {
#pragma HLS PIPELINE II=1
if (inp < initial_buffer_cycles) // Initial buffer of PoolDim lines
{
ap_uint<SIMD*Input_precision> inElem;
inElem = in.read();
inputBuf[current_block_write][current_line] = inElem;
current_line++;
inp++;
if (current_line == IFMDim * multiplying_factor)
{
current_line = 0;
current_block_write++;
if (current_block_write == number_blocks)
current_block_write = 0;
read_block++;
counter_internal_block = 0;
}
}
else
{
if (counter_internal_block < cycles_write_block-1 || read_block==IFMDim) // We are writing output, MMV IFMChan per cycle
{
//following code implements: current_block_read = (ofm_y*Stride + k_y)%number_blocks;
unsigned int current_block_read = (ofm_y*Stride + k_y);
//reminder computation
if (current_block_read >= ceil_block_read)
{
floor_block_read += number_blocks;
ceil_block_read += number_blocks;
}else if(current_block_read < floor_block_read){
ceil_block_read -= number_blocks;
floor_block_read -= number_blocks;
}
current_block_read -= floor_block_read;
unsigned int current_line_in_block = (ofm_x * Stride + k_x)*multiplying_factor + count_simd;
ap_uint<SIMD*Input_precision> outElem = inputBuf[current_block_read][(current_line_in_block)];
out.write(outElem);
count_simd++;
if (count_simd == multiplying_factor) {
count_simd=0;
k_x++;
if (k_x == ConvKernelDim) {
k_x = 0;
k_y++;
if (k_y == ConvKernelDim) {
k_y = 0;
ofm_x++;
if (ofm_x == OFMDim) {
ofm_x = 0;
ofm_y++;
if (ofm_y == OFMDim) {
ofm_y = 0;
inp = 0;
}
}
}
}
}
}
if ((counter_internal_block < cycles_read_block - 1) && (read_block<IFMDim)) // In parallel we write in the buffer, in the current block write if we still need to
{
ap_uint<SIMD*Input_precision> inElem;
inElem = in.read();
inputBuf[current_block_write][current_line] = inElem;
#pragma HLS DEPENDENCE variable=inputBuf inter false
#pragma HLS DEPENDENCE variable=inputBuf intra false
current_line++;
if (current_line == IFMDim * multiplying_factor) // We read the whole block, we change the next block in which we want to we
{ // We filled up a block, let's not read until
current_line = 0;
read_block++;
current_block_write++;
if (current_block_write == number_blocks)
current_block_write = 0;
#pragma HLS DEPENDENCE variable=current_block_write intra false
}
}
counter_internal_block++; // = (counter_internal_block +1) % max_cycles;
if (counter_internal_block == (max_cycles-1))
{
counter_internal_block = 0;
}
}
} // End base_iter
}
}
/**
* \brief Sliding Window unit that produces output vectors for feeding
* a Vector_Vector_Activate_Batch, implementing the im2col algorithm for depthwise separable convolutions. To be used only if
* ConvKernelDim%Stride = 0
*
* \tparam ConvKernelDim Dimension of the convolutional kernel (assumed square)
* \tparam IFMChannels Number of Input Feature Maps
* \tparam Input_precision Number bits per pixel
* \tparam IFMDim Width and Heigth of the Input Feature Map (assumed square)
* \tparam OFMDim Width and Heigth of the Output Feature Map (assumed square)
* \tparam SIMD Number of input columns computed in parallel
* \tparam Stride Stride of the convolutional kernel
* \tparam R Datatype for the resource used for FPGA implementation of the SWG - safely deducible from the paramaters
*
* \param in Input stream
* \param out Output stream
* \param numReps Number of time the function has to be repeatedly executed (e.g. number of images)
* \param r Resource type for the hardware implementation of the memory block
*/
template<unsigned int ConvKernelDim,
unsigned int IFMChannels,
unsigned int Input_precision,
unsigned int IFMDim,
unsigned int OFMDim,
unsigned int SIMD,
unsigned int Stride,
typename R>
void ConvolutionInputGenerator_dws(
stream<ap_uint<SIMD*Input_precision> > & in,
stream<ap_uint<SIMD*Input_precision> > & out,
const unsigned int numReps,
R const &r) {
CASSERT_DATAFLOW(IFMChannels % SIMD == 0);
CASSERT_DATAFLOW(ConvKernelDim % Stride == 0);
const unsigned int multiplying_factor = IFMChannels/SIMD;
const unsigned int number_blocks = ConvKernelDim/Stride + 1 ;
ap_uint<SIMD*Input_precision> inputBuf[number_blocks][Stride * IFMDim * multiplying_factor];
#pragma HLS ARRAY_PARTITION variable=inputBuf complete dim=1
memory_resource(inputBuf, r);
const unsigned int cycles_write_block = (OFMDim * ConvKernelDim * ConvKernelDim * multiplying_factor);
const unsigned int cycles_read_block = Stride * IFMDim * multiplying_factor;
const unsigned int max_cycles = MAX(cycles_write_block,cycles_read_block);
const unsigned int baseIter = IFMDim * ConvKernelDim * multiplying_factor// Initial buffer
+ OFMDim * MAX(cycles_write_block,cycles_read_block);
unsigned int counter_internal_block = 0;
unsigned int current_block_write = 0;
unsigned int next_block_write = 0;
unsigned int current_line = 0;
unsigned int read_block = 0;
unsigned int inp = 0, ofm_y = 0, ofm_x = 0, k_y = 0, k_x = 0, count_simd =0;
#pragma HLS reset variable=inp
for (unsigned int count_image = 0; count_image < numReps; count_image++) {
for (unsigned int i = 0; i < baseIter; i++) {
#pragma HLS PIPELINE II=1
if (inp < IFMDim * ConvKernelDim*multiplying_factor) {// Initial buffer of ConvKernelDim lines
ap_uint<SIMD*Input_precision> inElem;
inElem = in.read();
inputBuf[current_block_write][current_line] = inElem;
current_line++;
inp++;
if (current_line == Stride * IFMDim * multiplying_factor ) {
current_line = 0;
current_block_write++;
if (current_block_write == number_blocks) {
current_block_write=0;
}
read_block++;
counter_internal_block = 0;
}
} else {
if (counter_internal_block < cycles_write_block-1) { // We are writing output, MMV IFMChan per cycle
unsigned int current_block_read = (current_block_write + 1 + k_y / Stride);
if (current_block_read >= number_blocks) {
current_block_read-= number_blocks;
}
unsigned int current_line_in_block = ((k_y%Stride) * IFMDim + ofm_x*Stride + k_x)*multiplying_factor + count_simd;
ap_uint<SIMD*Input_precision> outElem = inputBuf[current_block_read][(current_line_in_block)];
out.write(outElem);
k_x++;
if (k_x == ConvKernelDim) {
k_x = 0;
k_y++;
if (k_y == ConvKernelDim) {
k_y = 0;
count_simd++;
if (count_simd == multiplying_factor) {
count_simd=0;
ofm_x ++;
if (ofm_x == OFMDim) {
ofm_x = 0;
ofm_y++;
if (ofm_y == OFMDim) {
ofm_y = 0;
inp = 0;
}
}
}
}
}
}
if ((counter_internal_block < cycles_read_block-1) && (read_block<IFMDim/Stride)) { // In parallel we write in the buffer, in the current block write if we still need to
ap_uint<SIMD*Input_precision> inElem;
inElem = in.read();
inputBuf[current_block_write][current_line] = inElem;
#pragma AP dependence variable=inputBuf intra false
#pragma AP dependence variable=inputBuf inter false
current_line++;
if (current_line == Stride * IFMDim * multiplying_factor) {// We read the whole block, we change the next block in which we want to we
// We filled up a block, let's not read until
current_line = 0;
read_block++;
current_block_write++;
if (current_block_write == number_blocks) {
current_block_write=0;
}
#pragma AP dependence variable=current_block_write intra false
}
}
counter_internal_block++; // = (counter_internal_block +1) % max_cycles;
if (counter_internal_block == (max_cycles-1)) {
counter_internal_block = 0;
}
}
} // End base_iter
read_block = 0;
} // End count_image
} // End generator
/**
* \brief Sliding Window unit that produces output vectors for feeding
* a Vector_Vector_Activate_Batch, implementing the im2col algorithm for depthwise separable convolutions. To be used when
* ConvKernelDim%Stride != 0 (e.g., Kernel=3, Stride=2)
*
* \tparam ConvKernelDim Dimension of the convolutional kernel (assumed square)
* \tparam IFMChannels Number of Input Feature Maps
* \tparam Input_precision Number bits per pixel
* \tparam IFMDim Width and Heigth of the Input Feature Map (assumed square)
* \tparam OFMDim Width and Heigth of the Output Feature Map (assumed square)
* \tparam SIMD Number of input columns computed in parallel
* \tparam Stride Stride of the convolutional kernel
* \tparam R Datatype for the resource used for FPGA implementation of the SWG - safely deducible from the paramaters
*
* \param in Input stream
* \param out Output stream
* \param numReps Number of time the function has to be repeatedly executed (e.g. number of images)
* \param r Resource type for the hardware implementation of the memory block
*/
template<unsigned int ConvKernelDim,
unsigned int IFMChannels,
unsigned int Input_precision,
unsigned int IFMDim,
unsigned int OFMDim,
unsigned int SIMD,
unsigned int Stride,
typename R>
void ConvolutionInputGenerator_kernel_stride_dws(
stream<ap_uint<SIMD*Input_precision> > & in,
stream<ap_uint<SIMD*Input_precision> > & out,
const unsigned int numReps,
R const &r) {
CASSERT_DATAFLOW(IFMChannels % SIMD == 0);
CASSERT_DATAFLOW(ConvKernelDim % Stride != 0);
const unsigned int multiplying_factor = IFMChannels/SIMD;
const unsigned int number_blocks = ConvKernelDim + Stride ;
ap_uint<SIMD*Input_precision> inputBuf[number_blocks][IFMDim * multiplying_factor];
#pragma HLS ARRAY_PARTITION variable=inputBuf complete dim=1
memory_resource(inputBuf, r);
const unsigned int cycles_write_block = OFMDim * ConvKernelDim * ConvKernelDim * multiplying_factor;
const unsigned int cycles_read_block = IFMDim * Stride * multiplying_factor;
const unsigned int max_cycles = MAX(cycles_write_block, cycles_read_block);
const unsigned int baseIter = (IFMDim * ConvKernelDim * multiplying_factor) + (OFMDim-1) * max_cycles+MAX(cycles_write_block,OFMDim);
const unsigned int initial_buffer_cycles = (IFMDim * ConvKernelDim * multiplying_factor) ;
unsigned int counter_internal_block = 0;
unsigned int next_block_write = 0;
unsigned int current_line = 0;
unsigned int inp = 0, ofm_y = 0, ofm_x = 0, k_y = 0, k_x = 0, current_k_y = 0, count_simd =0;
#pragma HLS RESET variable=inp
#pragma HLS DEPENDENCE variable=inputBuf inter false
#pragma HLS DEPENDENCE variable=inputBuf intra false
// #pragma HLS RESOURCE variable inputBuf core=RAM_2P_LUTRAM
for (unsigned int count_image = 0; count_image < numReps; count_image++) {
unsigned int floor_block_read = 0, ceil_block_read = number_blocks;
unsigned int read_block = 0;
unsigned int current_block_write = 0;
for (unsigned int i = 0; i < baseIter; i++) {
#pragma HLS PIPELINE II=1
#pragma HLS DEPENDENCE variable=current_block_write intra false
if (inp < initial_buffer_cycles) // Initial buffer of PoolDim lines
{
ap_uint<SIMD*Input_precision> inElem;
inElem = in.read();
inputBuf[current_block_write][current_line] = inElem;
current_line++;
inp++;
if (current_line == IFMDim * multiplying_factor)
{
current_line = 0;
current_block_write++;
if (current_block_write == number_blocks)
current_block_write = 0;
read_block++;
counter_internal_block = 0;
}
}
else
{
if (counter_internal_block < cycles_write_block-1 || read_block==IFMDim) // We are writing output, MMV IFMChan per cycle
{
//following code implements: current_block_read = (ofm_y*Stride + k_y)%number_blocks;
unsigned int current_block_read = (ofm_y*Stride + k_y);
//reminder computation
if (current_block_read >= ceil_block_read)
{
floor_block_read += number_blocks;
ceil_block_read += number_blocks;
}else if(current_block_read < floor_block_read){
ceil_block_read -= number_blocks;
floor_block_read -= number_blocks;
}
current_block_read -= floor_block_read;
unsigned int current_line_in_block = (ofm_x * Stride + k_x)*multiplying_factor + count_simd;
ap_uint<SIMD*Input_precision> outElem = inputBuf[current_block_read][(current_line_in_block)];
out.write(outElem);
k_x++;
if (k_x == ConvKernelDim) {
k_x = 0;
k_y++;
if (k_y == ConvKernelDim) {
k_y = 0;
count_simd++;
if (count_simd == multiplying_factor) {
count_simd=0;
ofm_x++;
if (ofm_x == OFMDim) {
ofm_x = 0;
ofm_y++;
if (ofm_y == OFMDim) {
ofm_y = 0;
inp = 0;
}
}
}
}
}
}
if ((counter_internal_block < cycles_read_block - 1) && (read_block<IFMDim)) // In parallel we write in the buffer, in the current block write if we still need to
{
ap_uint<SIMD*Input_precision> inElem;
inElem = in.read();
inputBuf[current_block_write][current_line] = inElem;
#pragma HLS DEPENDENCE variable=inputBuf inter false
#pragma HLS DEPENDENCE variable=inputBuf intra false
current_line++;
if (current_line == IFMDim * multiplying_factor) // We read the whole block, we change the next block in which we want to we
{ // We filled up a block, let's not read until
current_line = 0;
read_block++;
current_block_write++;
if (current_block_write == number_blocks)
current_block_write = 0;
#pragma HLS DEPENDENCE variable=current_block_write intra false
}
}
counter_internal_block++; // = (counter_internal_block +1) % max_cycles;
if (counter_internal_block == (max_cycles-1))
{
counter_internal_block = 0;
}
}
} // End base_iter
}
}
/**
* \brief Sliding Window for 1x1 kernel with stride!=1
*
* Basically performs a downsampling of the image removing rows and columns
*
* \tparam IFMChannels Number of Input Feature Maps
* \tparam Input_precision Number bits per pixel
* \tparam IFMDim Width and Heigth of the Input Feature Map (assumed square)
* \tparam SIMD Number of input columns computed in parallel
* \tparam Stride Stride of the convolutional kernel
*
* \param in Input stream
* \param out Output stream
* \param numReps Number of time the function has to be repeatedly executed (e.g. number of images)
*/
template< unsigned int IFMChannels,
unsigned int Input_precision,
unsigned int IFMDim,
unsigned int SIMD,
unsigned int Stride>
void ConvolutionInputGenerator_kernel1(
stream<ap_uint<SIMD*Input_precision> > & in,
stream<ap_uint<SIMD*Input_precision> > & out,
const unsigned int numReps) {
CASSERT_DATAFLOW(IFMChannels % SIMD == 0);
for (unsigned int im=0; im<numReps; im++) {
for (unsigned int y = 0; y < IFMDim; y++) {
for (unsigned int x = 0; x < IFMDim; x++) {
for (unsigned int count_simd =0; count_simd < IFMChannels/SIMD; count_simd++) {
#pragma HLS PIPELINE II=1
ap_uint<SIMD*Input_precision> inElem = in.read();
if ((x%Stride == 0)&&(y%Stride == 0)) {
out.write(inElem);
}
}
}
}
}
}
#endif