-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathwarmup.py
342 lines (297 loc) · 14.3 KB
/
warmup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
import numpy as np
import math
import tensorflow as tf
if tf.__version__ < '2.0':
import keras
from keras import backend as K
else:
from tensorflow import keras
import tensorflow.keras.backend as K
# https://github.com/Tony607/Keras_Bag_of_Tricks/blob/master/warmup_cosine_decay_scheduler.py
def cosine_decay_with_warmup(global_step,
learning_rate_base,
total_steps,
warmup_learning_rate=0.0,
warmup_steps=0,
hold_base_rate_steps=0):
"""Cosine decay schedule with warm up period.
Cosine annealing learning rate as described in:
Loshchilov and Hutter, SGDR: Stochastic Gradient Descent with Warm Restarts.
ICLR 2017. https://arxiv.org/abs/1608.03983
In this schedule, the learning rate grows linearly from warmup_learning_rate
to learning_rate_base for warmup_steps, then transitions to a cosine decay
schedule.
Arguments:
global_step {int} -- global step.
learning_rate_base {float} -- base learning rate.
total_steps {int} -- total number of training steps.
Keyword Arguments:
warmup_learning_rate {float} -- initial learning rate for warm up. (default: {0.0})
warmup_steps {int} -- number of warmup steps. (default: {0})
hold_base_rate_steps {int} -- Optional number of steps to hold base learning rate
before decaying. (default: {0})
Returns:
a float representing learning rate.
Raises:
ValueError: if warmup_learning_rate is larger than learning_rate_base,
or if warmup_steps is larger than total_steps.
"""
if total_steps < warmup_steps:
raise ValueError('total_steps must be larger or equal to warmup_steps.')
learning_rate = 0.5 * learning_rate_base * (1 + np.cos(np.pi *
(global_step - warmup_steps - hold_base_rate_steps) / float(total_steps - warmup_steps - hold_base_rate_steps)))
if hold_base_rate_steps > 0:
learning_rate = np.where(global_step > warmup_steps + hold_base_rate_steps, learning_rate, learning_rate_base)
if warmup_steps > 0:
if learning_rate_base < warmup_learning_rate:
raise ValueError('learning_rate_base must be larger or equal to warmup_learning_rate.')
slope = (learning_rate_base - warmup_learning_rate) / warmup_steps
warmup_rate = slope * global_step + warmup_learning_rate
learning_rate = np.where(global_step < warmup_steps, warmup_rate, learning_rate)
return np.where(global_step > total_steps, 0.0, learning_rate)
class WarmUpCosineDecayScheduler(keras.callbacks.Callback):
"""Cosine decay with warmup learning rate scheduler
"""
def __init__(self,
learning_rate_base,
total_steps,
global_step_init=0,
warmup_learning_rate=0.0,
warmup_steps=0,
hold_base_rate_steps=0,
verbose=0):
"""Constructor for cosine decay with warmup learning rate scheduler.
Arguments:
learning_rate_base {float} -- base learning rate.
total_steps {int} -- total number of training steps.
Keyword Arguments:
global_step_init {int} -- initial global step, e.g. from previous checkpoint.
warmup_learning_rate {float} -- initial learning rate for warm up. (default: {0.0})
warmup_steps {int} -- number of warmup steps. (default: {0})
hold_base_rate_steps {int} -- Optional number of steps to hold base learning rate before decaying. (default: {0})
verbose {int} -- 0: quiet, 1: update messages. (default: {0})
"""
super(WarmUpCosineDecayScheduler, self).__init__()
self.learning_rate_base = learning_rate_base
self.total_steps = total_steps
self.global_step = global_step_init
self.warmup_learning_rate = warmup_learning_rate
self.warmup_steps = warmup_steps
self.hold_base_rate_steps = hold_base_rate_steps
self.verbose = verbose
self.learning_rates = []
def on_batch_end(self, batch, logs=None):
self.global_step = self.global_step + 1
lr = K.get_value(self.model.optimizer.lr)
self.learning_rates.append(lr)
def on_batch_begin(self, batch, logs=None):
lr = cosine_decay_with_warmup(global_step=self.global_step,
learning_rate_base=self.learning_rate_base,
total_steps=self.total_steps,
warmup_learning_rate=self.warmup_learning_rate,
warmup_steps=self.warmup_steps,
hold_base_rate_steps=self.hold_base_rate_steps)
K.set_value(self.model.optimizer.lr, lr)
if self.verbose > 0:
print('\nBatch %05d: setting learning rate to %s.' % (self.global_step + 1, lr))
class WarmUpLearningRateScheduler(keras.callbacks.Callback):
"""Warmup learning rate scheduler
"""
def __init__(self, warmup_batches, init_lr, verbose=0):
"""Constructor for warmup learning rate scheduler
Arguments:
warmup_batches {int} -- Number of batch for warmup.
init_lr {float} -- Learning rate after warmup.
Keyword Arguments:
verbose {int} -- 0: quiet, 1: update messages. (default: {0})
"""
super(WarmUpLearningRateScheduler, self).__init__()
self.warmup_batches = warmup_batches
self.init_lr = init_lr
self.verbose = verbose
self.batch_count = 0
self.learning_rates = []
def on_batch_end(self, batch, logs=None):
self.batch_count = self.batch_count + 1
lr = K.get_value(self.model.optimizer.lr)
self.learning_rates.append(lr)
def on_batch_begin(self, batch, logs=None):
if self.batch_count <= self.warmup_batches:
lr = self.batch_count * self.init_lr / self.warmup_batches
K.set_value(self.model.optimizer.lr, lr)
if self.verbose > 0:
print('\nBatch %05d: WarmUpLearningRateScheduler setting learning rate to %s.' % (self.batch_count + 1, lr))
class CosineAnnealingScheduler(keras.callbacks.Callback):
"""Cosine annealing scheduler.
"""
def __init__(self, T_max, eta_max, eta_min=0, verbose=0):
super(CosineAnnealingScheduler, self).__init__()
self.T_max = T_max
self.eta_max = eta_max
self.eta_min = eta_min
self.verbose = verbose
def on_epoch_begin(self, epoch, logs=None):
if not hasattr(self.model.optimizer, 'lr'):
raise ValueError('Optimizer must have a "lr" attribute.')
lr = self.eta_min + (self.eta_max - self.eta_min) * (1 + math.cos(math.pi * epoch / self.T_max)) / 2
K.set_value(self.model.optimizer.lr, lr)
if self.verbose > 0:
print('\nEpoch %05d: CosineAnnealingScheduler setting learning '
'rate to %s.' % (epoch + 1, lr))
def on_epoch_end(self, epoch, logs=None):
logs = logs or {}
logs['lr'] = K.get_value(self.model.optimizer.lr)
## https://github.com/bckenstler/CLR
class CyclicLR(keras.callbacks.Callback):
"""This callback implements a cyclical learning rate policy (CLR).
The method cycles the learning rate between two boundaries with
some constant frequency, as detailed in this paper (https://arxiv.org/abs/1506.01186).
The amplitude of the cycle can be scaled on a per-iteration or
per-cycle basis.
This class has three built-in policies, as put forth in the paper.
"triangular":
A basic triangular cycle w/ no amplitude scaling.
"triangular2":
A basic triangular cycle that scales initial amplitude by half each cycle.
"exp_range":
A cycle that scales initial amplitude by gamma**(cycle iterations) at each
cycle iteration.
For more detail, please see paper.
# Example
```python
clr = CyclicLR(base_lr=0.001, max_lr=0.006,
step_size=2000., mode='triangular')
model.fit(X_train, Y_train, callbacks=[clr])
```
Class also supports custom scaling functions:
```python
clr_fn = lambda x: 0.5*(1+np.sin(x*np.pi/2.))
clr = CyclicLR(base_lr=0.001, max_lr=0.006,
step_size=2000., scale_fn=clr_fn,
scale_mode='cycle')
model.fit(X_train, Y_train, callbacks=[clr])
```
# Arguments
base_lr: initial learning rate which is the
lower boundary in the cycle.
max_lr: upper boundary in the cycle. Functionally,
it defines the cycle amplitude (max_lr - base_lr).
The lr at any cycle is the sum of base_lr
and some scaling of the amplitude; therefore
max_lr may not actually be reached depending on
scaling function.
step_size: number of training iterations per
half cycle. Authors suggest setting step_size
2-8 x training iterations in epoch.
mode: one of {triangular, triangular2, exp_range}.
Default 'triangular'.
Values correspond to policies detailed above.
If scale_fn is not None, this argument is ignored.
gamma: constant in 'exp_range' scaling function:
gamma**(cycle iterations)
scale_fn: Custom scaling policy defined by a single
argument lambda function, where
0 <= scale_fn(x) <= 1 for all x >= 0.
mode paramater is ignored
scale_mode: {'cycle', 'iterations'}.
Defines whether scale_fn is evaluated on
cycle number or cycle iterations (training
iterations since start of cycle). Default is 'cycle'.
"""
def __init__(self, base_lr=0.001, max_lr=0.006, step_size=2000., mode='triangular',
gamma=1., scale_fn=None, scale_mode='cycle'):
super(CyclicLR, self).__init__()
self.base_lr = base_lr
self.max_lr = max_lr
self.step_size = step_size
self.mode = mode
self.gamma = gamma
if scale_fn == None:
if self.mode == 'triangular':
self.scale_fn = lambda x: 1.
self.scale_mode = 'cycle'
elif self.mode == 'triangular2':
self.scale_fn = lambda x: 1 / (2. ** (x - 1))
self.scale_mode = 'cycle'
elif self.mode == 'exp_range':
self.scale_fn = lambda x: gamma ** (x)
self.scale_mode = 'iterations'
else:
self.scale_fn = scale_fn
self.scale_mode = scale_mode
self.clr_iterations = 0.
self.trn_iterations = 0.
self.history = {}
self._reset()
def _reset(self, new_base_lr=None, new_max_lr=None,
new_step_size=None):
"""Resets cycle iterations.
Optional boundary/step size adjustment.
"""
if new_base_lr != None:
self.base_lr = new_base_lr
if new_max_lr != None:
self.max_lr = new_max_lr
if new_step_size != None:
self.step_size = new_step_size
self.clr_iterations = 0.
def clr(self):
cycle = np.floor(1 + self.clr_iterations / (2 * self.step_size))
x = np.abs(self.clr_iterations / self.step_size - 2 * cycle + 1)
if self.scale_mode == 'cycle':
return self.base_lr + (self.max_lr - self.base_lr) * np.maximum(0, (1 - x)) * self.scale_fn(cycle)
else:
return self.base_lr + (self.max_lr - self.base_lr) * np.maximum(0, (1 - x)) * self.scale_fn(self.clr_iterations)
def on_train_begin(self, logs={}):
logs = logs or {}
if self.clr_iterations == 0:
K.set_value(self.model.optimizer.lr, self.base_lr)
else:
K.set_value(self.model.optimizer.lr, self.clr())
def on_batch_end(self, epoch, logs=None):
logs = logs or {}
self.trn_iterations += 1
self.clr_iterations += 1
self.history.setdefault('lr', []).append(K.get_value(self.model.optimizer.lr))
self.history.setdefault('iterations', []).append(self.trn_iterations)
for k, v in logs.items():
self.history.setdefault(k, []).append(v)
K.set_value(self.model.optimizer.lr, self.clr())
class LRTensorBoard(keras.callbacks.TensorBoard):
def __init__(self, log_dir, histogram_freq=10, update_freq='batch', write_graph=True): # add other arguments to __init__ if you need
super().__init__(log_dir=log_dir)
super().__init__(histogram_freq=histogram_freq)
super().__init__(update_freq=update_freq)
super().__init__(write_graph=write_graph)
def on_epoch_end(self, epoch, logs=None):
logs.update({'lr': keras.backend.eval(self.model.optimizer.lr)})
super().on_epoch_end(epoch, logs)
def on_batch_end(self, batch, logs=None):
logs.update({'lr': keras.backend.eval(self.model.optimizer.lr)})
super().on_epoch_end(batch, logs)
if __name__ == '__main__':
# Number of training samples.
sample_count = 12
# Total epochs to train.
epochs = 7
# Number of warmup epochs.
warmup_epoch = 5
# Training batch size, set small value here for demonstration purpose.
batch_size = 4
# Compute the number of warmup batches.
warmup_batches = warmup_epoch * sample_count / batch_size
# Create the Learning rate scheduler.
warm_up_lr = WarmUpLearningRateScheduler(warmup_batches, init_lr=0.001)
#########cos#cos#cos #cos#cos#cos #cos#cos#cos #cos#cos#cos #cos#cos#cos #cos#cos#cos
# Base learning rate after warmup.
learning_rate_base = 0.001
total_steps = int(epochs * sample_count / batch_size)
# Compute the number of warmup batches.
warmup_steps = int(warmup_epoch * sample_count / batch_size)
warmup_batches = warmup_epoch * sample_count / batch_size
# Create the Learning rate scheduler.
warm_up_cos_lr = WarmUpCosineDecayScheduler(learning_rate_base=learning_rate_base,
total_steps=total_steps,
warmup_learning_rate=0.0,
warmup_steps=warmup_steps,
hold_base_rate_steps=0)