forked from pytorch/FBGEMM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Utils.h
399 lines (356 loc) · 10 KB
/
Utils.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
* All rights reserved.
* This source code is licensed under the BSD-style license found in the
* LICENSE file in the root directory of this source tree.
*/
#pragma once
#include <algorithm>
#include <array>
#include <cmath>
#include <string>
#include <type_traits>
#include "./FbgemmBuild.h"
#include "./UtilsAvx2.h"
// forward declarations to asmjit
namespace asmjit {
namespace x86 {
class Xmm;
class Ymm;
class Zmm;
} // namespace x86
} // namespace asmjit
namespace fbgemm {
/**
* @brief Helper struct to type specialize for uint8 and int8 together.
*/
template <typename T>
struct is_8bit {
static constexpr bool value =
std::is_same<T, int8_t>::value || std::is_same<T, uint8_t>::value;
};
/**
* @brief Typed enum to specify matrix operations.
*/
enum class matrix_op_t { NoTranspose, Transpose };
/**
* @brief Typed enum for supported instruction sets.
*/
enum class inst_set_t {
anyarch,
avx2,
avx512,
avx512_ymm,
avx512_vnni,
avx512_vnni_ymm
};
/**
* @brief Typed enum for optimized paths for convolutions
*/
enum class optimized_conv_t {
depthwise,
groupwise,
pointwise,
fastpath1d,
im2col,
directconv
};
/**
* @brief Typed enum for implementation type.
*
* ref is reference and opt is optimized.
*/
enum class impl_type_t { ref, opt };
/**
* @brief Typed enum to specify data layout.
* KCX can be KCRS format or KCTRS format (e.g., for 3-D convolutions)
* KXC can be KRSC format or KTRSC format (e.g., for 3-D convolutions)
*/
enum class FBGEMM_ENUM_CLASS_API layout_t { KCX, KXC };
/**
* @brief Some commonly used variables for different instruction sets
*/
template <inst_set_t inst_set>
struct simd_info;
template <>
struct simd_info<inst_set_t::avx2> {
static constexpr int WIDTH_BITS = 256;
static constexpr int WIDTH_BYTES = 32;
static constexpr int WIDTH_32BIT_ELEMS = 8;
static constexpr int NUM_VEC_REGS = 16;
using vec_reg_t = asmjit::x86::Ymm;
};
template <>
struct simd_info<inst_set_t::avx512> {
static constexpr int WIDTH_BITS = 512;
static constexpr int WIDTH_BYTES = 64;
static constexpr int WIDTH_32BIT_ELEMS = 16;
static constexpr int NUM_VEC_REGS = 32;
using vec_reg_t = asmjit::x86::Zmm;
};
template <>
struct simd_info<inst_set_t::avx512_vnni>
: public simd_info<inst_set_t::avx512> {};
template <>
struct simd_info<inst_set_t::avx512_ymm> {
static constexpr int WIDTH_BITS = 256;
static constexpr int WIDTH_BYTES = 32;
static constexpr int WIDTH_32BIT_ELEMS = 8;
static constexpr int NUM_VEC_REGS = 32;
using vec_reg_t = asmjit::x86::Ymm;
};
template <>
struct simd_info<inst_set_t::avx512_vnni_ymm>
: public simd_info<inst_set_t::avx512_ymm> {};
/**
* @brief A function to compare data in two buffers for closeness/equality.
*/
template <typename T>
FBGEMM_API int compare_buffers(
const T* ref,
const T* test,
int m,
int n,
int ld,
size_t max_mismatches_to_report,
float atol = 1e-3);
/**
* @brief Debugging helper.
*/
template <typename T>
void printMatrix(
matrix_op_t trans,
const T* inp,
size_t R,
size_t C,
size_t ld,
std::string name);
/**
* @brief Transpose a matrix.
*
* @param M the number of rows of input matrix
* @param N the number of columns of input matrix
*/
template <typename T>
FBGEMM_API void transpose_simd(
unsigned M,
unsigned N,
const T* src,
unsigned ld_src,
T* dst,
unsigned ld_dst);
/**
* @brief Explicitly set instruction set to be used
*/
FBGEMM_API void fbgemmForceIsa(inst_set_t);
/**
* @brief Enable AVX512-256 path for Intel(r) Xeon(r) D servers
*/
FBGEMM_API void fbgemmEnableAvx512Ymm(bool);
/**
* @brief Are we running on a Xeon-D cpu?
*/
FBGEMM_API bool fbgemmIsIntelXeonD();
/**
* @brief Are we running on a AVX512 supported cpu?
*/
FBGEMM_API bool fbgemmHasAvx512Support();
/**
* @brief Are we running on a AVX2 supported cpu?
*/
FBGEMM_API bool fbgemmHasAvx2Support();
/**
* @brief Are we running on a AVX512_VNNI supported cpu?
*/
FBGEMM_API bool fbgemmHasAvx512VnniSupport();
/**
* @brief Retrieve current CPU instruction set
*/
FBGEMM_API inst_set_t fbgemmInstructionSet();
/**
* @brief Is ISA is wide vector ZMM
*/
FBGEMM_API bool isZmm(inst_set_t);
/**
* @brief Is ISA is wide vector ZMM
*/
FBGEMM_API bool isYmm(inst_set_t);
/**
* @brief Helper struct to enable autotuning of FBGEMM packing and kernels.
*
* This structure is optional. If not used, the default values for these
* parameters are picked up from PackingTraits-inl.h. Please see this
* file for details on these parameters.
*/
struct FBGEMM_API BlockingFactors {
int MR;
int NR;
int NR_MIN;
int ROW_INTERLEAVE;
int MCB;
int KCB;
int NCB;
};
/**
* @brief A struct to represent the partition information for the threads on the
* m and n dimensions.
*/
struct FBGEMM_API thread_type_t {
int g_num_threads;
int m_num_threads;
int n_num_threads;
int g_thread_id;
int m_thread_id;
int n_thread_id;
std::string toString() const {
std::string out = "";
out += "g num threads: " + std::to_string(g_num_threads) + ", ";
out += "m num threads: " + std::to_string(m_num_threads) + ", ";
out += "n num threads: " + std::to_string(n_num_threads) + ", ";
out += "g thread id: " + std::to_string(g_thread_id) + ", ";
out += "m thread id: " + std::to_string(m_thread_id) + ", ";
out += "n thread id: " + std::to_string(n_thread_id);
return out;
}
};
/**
* @brief A heuristic algorithm to partition the threads across m and n
* dimensions for parallelization, ensuring the ratio between the number of rows
* allocated to each thread in the m dimension and the number of columns
* allocated to each thread in the n dimension is approximately aspect_ratio.
*
* The less aspect_ratio is, the more favorable it is to parallelize the m
* dimension over the n dimension.
*/
FBGEMM_API int fbgemmGet2DPartition(
int m,
int n,
int nthreads,
int n_align,
double aspect_ratio);
/**
* @brief A heuristic way to partition the threads across g, m and n dimensions
* for parallelization.
*/
FBGEMM_API thread_type_t fbgemmGetThreadPartition(
int g,
int m,
int n,
int num_threads,
int thread_id,
int n_align = 64);
template <int SIZE, typename T = std::int32_t>
std::string arrayToString(const std::array<T, SIZE>& inp) {
std::string out = "[";
for (int i = 0; i < SIZE; ++i) {
out += std::to_string(inp[i]);
out += (i != SIZE - 1) ? std::string(", ") : std::string("]");
}
return out;
}
template <typename accT = std::int32_t>
bool isValidBlockingFactor(BlockingFactors* param) {
constexpr bool is_32bit = std::is_same<accT, int32_t>::value;
constexpr bool is_16bit = std::is_same<accT, int16_t>::value;
static const auto iset = fbgemmInstructionSet();
if (is_32bit) {
if (param->ROW_INTERLEAVE != 4)
return false;
if (isZmm(iset)) {
if (param->NR_MIN != 16 || param->NR % param->NR_MIN)
return false;
} else if (isYmm(iset)) {
if (param->NR_MIN != 8 || param->NR % param->NR_MIN)
return false;
}
} else if (is_16bit) {
if (param->ROW_INTERLEAVE != 2)
return false;
if (isZmm(iset)) {
if (param->NR_MIN != 32 || param->NR % param->NR_MIN)
return false;
} else if (isYmm(iset)) {
if (param->NR_MIN != 16 || param->NR % param->NR_MIN)
return false;
}
}
if (param->MCB % param->MR)
return false;
if (param->NCB % param->NR)
return false;
if (isZmm(iset)) {
if (is_32bit) {
// Zmm register usage for C
if (param->MR * (param->NR / param->NR_MIN) > 28)
return false;
} else if (is_16bit) {
// Zmm register usage for C + one row for loading B
if ((param->MR * (param->NR / param->NR_MIN) +
(param->NR / param->NR_MIN)) > 28)
return false;
}
} else if (isYmm(iset)) {
if (param->MR * (param->NR / param->NR_MIN) > 12)
return false;
}
return true;
}
/**
* @brief Partition work across given number of threads
*
* @param start Given thread_id should execute starting from the index
* start
* @param stop Given thread_id should stop executing at the index stop
*
* i.e., the loop should be equivalent to for(int i = start; i < end; ++i)
*/
FBGEMM_API void fbgemmPartition1D(
int thread_id,
int num_threads,
std::int64_t total_work,
std::int64_t& start,
std::int64_t& end);
/**
* @brief Partition work across given number of threads in blocks
* of size block_size. Each thread gets a multiple of block_size
* work or nothing, except the last one. The last one might
* receive the fringe case.
*
* @param start Given thread_id should execute starting from the index
* start
* @param stop Given thread_id should stop executing at the index stop
*
* The loop can be equivalent to for(int i = start; i < end; i+=block_size)
* except for the last thread. (i.e., thread_id = num_threads - 1)
*
* Example 1: block_size = 2, num_threads = 2
* total_work start(th 0) end(th 0) start(th 1) end(th 1)
* 4 0 2 2 4
* 5 0 2 2 5
*
* Example 2: block_size = 2, num_threads = 3
* total_work start(th 0) end(th 0) start(th 1) end(th 1)
* 4 0 2 2 4
* 5 0 2 2 4
*
* total_work start(th 2) end(th 2)
* 4 4 4
* 5 4 5
*
* Example 3: block_size = 2, num_threads = 4
* total_work start(th 0) end(th 0) start(th 1) end(th 1)
* 4 0 2 2 4
* 5 0 2 2 4
*
* total_work start(th 2) end(th 2) start(th 3) end(th 3)
* 4 4 4 4 4
* 5 4 4 4 5
*/
FBGEMM_API void fbgemmPartition1DBlocked(
int thread_id,
int num_threads,
std::int64_t total_work,
int block_size,
std::int64_t& start,
std::int64_t& end);
} // namespace fbgemm