forked from llvm-mirror/llvm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMemoryDependenceAnalysis.cpp
1794 lines (1552 loc) · 70 KB
/
MemoryDependenceAnalysis.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
//===- MemoryDependenceAnalysis.cpp - Mem Deps Implementation -------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements an analysis that determines, for a given memory
// operation, what preceding memory operations it depends on. It builds on
// alias analysis information, and tries to provide a lazy, caching interface to
// a common kind of alias information query.
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/MemoryDependenceAnalysis.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/MemoryBuiltins.h"
#include "llvm/Analysis/MemoryLocation.h"
#include "llvm/Analysis/OrderedBasicBlock.h"
#include "llvm/Analysis/PHITransAddr.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CallSite.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/PredIteratorCache.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Use.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/Pass.h"
#include "llvm/Support/AtomicOrdering.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/MathExtras.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <iterator>
#include <utility>
using namespace llvm;
#define DEBUG_TYPE "memdep"
STATISTIC(NumCacheNonLocal, "Number of fully cached non-local responses");
STATISTIC(NumCacheDirtyNonLocal, "Number of dirty cached non-local responses");
STATISTIC(NumUncacheNonLocal, "Number of uncached non-local responses");
STATISTIC(NumCacheNonLocalPtr,
"Number of fully cached non-local ptr responses");
STATISTIC(NumCacheDirtyNonLocalPtr,
"Number of cached, but dirty, non-local ptr responses");
STATISTIC(NumUncacheNonLocalPtr, "Number of uncached non-local ptr responses");
STATISTIC(NumCacheCompleteNonLocalPtr,
"Number of block queries that were completely cached");
// Limit for the number of instructions to scan in a block.
static cl::opt<unsigned> BlockScanLimit(
"memdep-block-scan-limit", cl::Hidden, cl::init(100),
cl::desc("The number of instructions to scan in a block in memory "
"dependency analysis (default = 100)"));
static cl::opt<unsigned>
BlockNumberLimit("memdep-block-number-limit", cl::Hidden, cl::init(1000),
cl::desc("The number of blocks to scan during memory "
"dependency analysis (default = 1000)"));
// Limit on the number of memdep results to process.
static const unsigned int NumResultsLimit = 100;
/// This is a helper function that removes Val from 'Inst's set in ReverseMap.
///
/// If the set becomes empty, remove Inst's entry.
template <typename KeyTy>
static void
RemoveFromReverseMap(DenseMap<Instruction *, SmallPtrSet<KeyTy, 4>> &ReverseMap,
Instruction *Inst, KeyTy Val) {
typename DenseMap<Instruction *, SmallPtrSet<KeyTy, 4>>::iterator InstIt =
ReverseMap.find(Inst);
assert(InstIt != ReverseMap.end() && "Reverse map out of sync?");
bool Found = InstIt->second.erase(Val);
assert(Found && "Invalid reverse map!");
(void)Found;
if (InstIt->second.empty())
ReverseMap.erase(InstIt);
}
/// If the given instruction references a specific memory location, fill in Loc
/// with the details, otherwise set Loc.Ptr to null.
///
/// Returns a ModRefInfo value describing the general behavior of the
/// instruction.
static ModRefInfo GetLocation(const Instruction *Inst, MemoryLocation &Loc,
const TargetLibraryInfo &TLI) {
if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
if (LI->isUnordered()) {
Loc = MemoryLocation::get(LI);
return ModRefInfo::Ref;
}
if (LI->getOrdering() == AtomicOrdering::Monotonic) {
Loc = MemoryLocation::get(LI);
return ModRefInfo::ModRef;
}
Loc = MemoryLocation();
return ModRefInfo::ModRef;
}
if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
if (SI->isUnordered()) {
Loc = MemoryLocation::get(SI);
return ModRefInfo::Mod;
}
if (SI->getOrdering() == AtomicOrdering::Monotonic) {
Loc = MemoryLocation::get(SI);
return ModRefInfo::ModRef;
}
Loc = MemoryLocation();
return ModRefInfo::ModRef;
}
if (const VAArgInst *V = dyn_cast<VAArgInst>(Inst)) {
Loc = MemoryLocation::get(V);
return ModRefInfo::ModRef;
}
if (const CallInst *CI = isFreeCall(Inst, &TLI)) {
// calls to free() deallocate the entire structure
Loc = MemoryLocation(CI->getArgOperand(0));
return ModRefInfo::Mod;
}
if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
switch (II->getIntrinsicID()) {
case Intrinsic::lifetime_start:
case Intrinsic::lifetime_end:
case Intrinsic::invariant_start:
Loc = MemoryLocation::getForArgument(II, 1, TLI);
// These intrinsics don't really modify the memory, but returning Mod
// will allow them to be handled conservatively.
return ModRefInfo::Mod;
case Intrinsic::invariant_end:
Loc = MemoryLocation::getForArgument(II, 2, TLI);
// These intrinsics don't really modify the memory, but returning Mod
// will allow them to be handled conservatively.
return ModRefInfo::Mod;
default:
break;
}
}
// Otherwise, just do the coarse-grained thing that always works.
if (Inst->mayWriteToMemory())
return ModRefInfo::ModRef;
if (Inst->mayReadFromMemory())
return ModRefInfo::Ref;
return ModRefInfo::NoModRef;
}
/// Private helper for finding the local dependencies of a call site.
MemDepResult MemoryDependenceResults::getCallSiteDependencyFrom(
CallSite CS, bool isReadOnlyCall, BasicBlock::iterator ScanIt,
BasicBlock *BB) {
unsigned Limit = BlockScanLimit;
// Walk backwards through the block, looking for dependencies.
while (ScanIt != BB->begin()) {
Instruction *Inst = &*--ScanIt;
// Debug intrinsics don't cause dependences and should not affect Limit
if (isa<DbgInfoIntrinsic>(Inst))
continue;
// Limit the amount of scanning we do so we don't end up with quadratic
// running time on extreme testcases.
--Limit;
if (!Limit)
return MemDepResult::getUnknown();
// If this inst is a memory op, get the pointer it accessed
MemoryLocation Loc;
ModRefInfo MR = GetLocation(Inst, Loc, TLI);
if (Loc.Ptr) {
// A simple instruction.
if (isModOrRefSet(AA.getModRefInfo(CS, Loc)))
return MemDepResult::getClobber(Inst);
continue;
}
if (auto InstCS = CallSite(Inst)) {
// If these two calls do not interfere, look past it.
if (isNoModRef(AA.getModRefInfo(CS, InstCS))) {
// If the two calls are the same, return InstCS as a Def, so that
// CS can be found redundant and eliminated.
if (isReadOnlyCall && !isModSet(MR) &&
CS.getInstruction()->isIdenticalToWhenDefined(Inst))
return MemDepResult::getDef(Inst);
// Otherwise if the two calls don't interact (e.g. InstCS is readnone)
// keep scanning.
continue;
} else
return MemDepResult::getClobber(Inst);
}
// If we could not obtain a pointer for the instruction and the instruction
// touches memory then assume that this is a dependency.
if (isModOrRefSet(MR))
return MemDepResult::getClobber(Inst);
}
// No dependence found. If this is the entry block of the function, it is
// unknown, otherwise it is non-local.
if (BB != &BB->getParent()->getEntryBlock())
return MemDepResult::getNonLocal();
return MemDepResult::getNonFuncLocal();
}
unsigned MemoryDependenceResults::getLoadLoadClobberFullWidthSize(
const Value *MemLocBase, int64_t MemLocOffs, unsigned MemLocSize,
const LoadInst *LI) {
// We can only extend simple integer loads.
if (!isa<IntegerType>(LI->getType()) || !LI->isSimple())
return 0;
// Load widening is hostile to ThreadSanitizer: it may cause false positives
// or make the reports more cryptic (access sizes are wrong).
if (LI->getParent()->getParent()->hasFnAttribute(Attribute::SanitizeThread))
return 0;
const DataLayout &DL = LI->getModule()->getDataLayout();
// Get the base of this load.
int64_t LIOffs = 0;
const Value *LIBase =
GetPointerBaseWithConstantOffset(LI->getPointerOperand(), LIOffs, DL);
// If the two pointers are not based on the same pointer, we can't tell that
// they are related.
if (LIBase != MemLocBase)
return 0;
// Okay, the two values are based on the same pointer, but returned as
// no-alias. This happens when we have things like two byte loads at "P+1"
// and "P+3". Check to see if increasing the size of the "LI" load up to its
// alignment (or the largest native integer type) will allow us to load all
// the bits required by MemLoc.
// If MemLoc is before LI, then no widening of LI will help us out.
if (MemLocOffs < LIOffs)
return 0;
// Get the alignment of the load in bytes. We assume that it is safe to load
// any legal integer up to this size without a problem. For example, if we're
// looking at an i8 load on x86-32 that is known 1024 byte aligned, we can
// widen it up to an i32 load. If it is known 2-byte aligned, we can widen it
// to i16.
unsigned LoadAlign = LI->getAlignment();
int64_t MemLocEnd = MemLocOffs + MemLocSize;
// If no amount of rounding up will let MemLoc fit into LI, then bail out.
if (LIOffs + LoadAlign < MemLocEnd)
return 0;
// This is the size of the load to try. Start with the next larger power of
// two.
unsigned NewLoadByteSize = LI->getType()->getPrimitiveSizeInBits() / 8U;
NewLoadByteSize = NextPowerOf2(NewLoadByteSize);
while (true) {
// If this load size is bigger than our known alignment or would not fit
// into a native integer register, then we fail.
if (NewLoadByteSize > LoadAlign ||
!DL.fitsInLegalInteger(NewLoadByteSize * 8))
return 0;
if (LIOffs + NewLoadByteSize > MemLocEnd &&
(LI->getParent()->getParent()->hasFnAttribute(
Attribute::SanitizeAddress) ||
LI->getParent()->getParent()->hasFnAttribute(
Attribute::SanitizeHWAddress)))
// We will be reading past the location accessed by the original program.
// While this is safe in a regular build, Address Safety analysis tools
// may start reporting false warnings. So, don't do widening.
return 0;
// If a load of this width would include all of MemLoc, then we succeed.
if (LIOffs + NewLoadByteSize >= MemLocEnd)
return NewLoadByteSize;
NewLoadByteSize <<= 1;
}
}
static bool isVolatile(Instruction *Inst) {
if (auto *LI = dyn_cast<LoadInst>(Inst))
return LI->isVolatile();
if (auto *SI = dyn_cast<StoreInst>(Inst))
return SI->isVolatile();
if (auto *AI = dyn_cast<AtomicCmpXchgInst>(Inst))
return AI->isVolatile();
return false;
}
MemDepResult MemoryDependenceResults::getPointerDependencyFrom(
const MemoryLocation &MemLoc, bool isLoad, BasicBlock::iterator ScanIt,
BasicBlock *BB, Instruction *QueryInst, unsigned *Limit) {
MemDepResult InvariantGroupDependency = MemDepResult::getUnknown();
if (QueryInst != nullptr) {
if (auto *LI = dyn_cast<LoadInst>(QueryInst)) {
InvariantGroupDependency = getInvariantGroupPointerDependency(LI, BB);
if (InvariantGroupDependency.isDef())
return InvariantGroupDependency;
}
}
MemDepResult SimpleDep = getSimplePointerDependencyFrom(
MemLoc, isLoad, ScanIt, BB, QueryInst, Limit);
if (SimpleDep.isDef())
return SimpleDep;
// Non-local invariant group dependency indicates there is non local Def
// (it only returns nonLocal if it finds nonLocal def), which is better than
// local clobber and everything else.
if (InvariantGroupDependency.isNonLocal())
return InvariantGroupDependency;
assert(InvariantGroupDependency.isUnknown() &&
"InvariantGroupDependency should be only unknown at this point");
return SimpleDep;
}
MemDepResult
MemoryDependenceResults::getInvariantGroupPointerDependency(LoadInst *LI,
BasicBlock *BB) {
if (!LI->getMetadata(LLVMContext::MD_invariant_group))
return MemDepResult::getUnknown();
// Take the ptr operand after all casts and geps 0. This way we can search
// cast graph down only.
Value *LoadOperand = LI->getPointerOperand()->stripPointerCasts();
// It's is not safe to walk the use list of global value, because function
// passes aren't allowed to look outside their functions.
// FIXME: this could be fixed by filtering instructions from outside
// of current function.
if (isa<GlobalValue>(LoadOperand))
return MemDepResult::getUnknown();
// Queue to process all pointers that are equivalent to load operand.
SmallVector<const Value *, 8> LoadOperandsQueue;
LoadOperandsQueue.push_back(LoadOperand);
Instruction *ClosestDependency = nullptr;
// Order of instructions in uses list is unpredictible. In order to always
// get the same result, we will look for the closest dominance.
auto GetClosestDependency = [this](Instruction *Best, Instruction *Other) {
assert(Other && "Must call it with not null instruction");
if (Best == nullptr || DT.dominates(Best, Other))
return Other;
return Best;
};
// FIXME: This loop is O(N^2) because dominates can be O(n) and in worst case
// we will see all the instructions. This should be fixed in MSSA.
while (!LoadOperandsQueue.empty()) {
const Value *Ptr = LoadOperandsQueue.pop_back_val();
assert(Ptr && !isa<GlobalValue>(Ptr) &&
"Null or GlobalValue should not be inserted");
for (const Use &Us : Ptr->uses()) {
auto *U = dyn_cast<Instruction>(Us.getUser());
if (!U || U == LI || !DT.dominates(U, LI))
continue;
// Bitcast or gep with zeros are using Ptr. Add to queue to check it's
// users. U = bitcast Ptr
if (isa<BitCastInst>(U)) {
LoadOperandsQueue.push_back(U);
continue;
}
// Gep with zeros is equivalent to bitcast.
// FIXME: we are not sure if some bitcast should be canonicalized to gep 0
// or gep 0 to bitcast because of SROA, so there are 2 forms. When
// typeless pointers will be ready then both cases will be gone
// (and this BFS also won't be needed).
if (auto *GEP = dyn_cast<GetElementPtrInst>(U))
if (GEP->hasAllZeroIndices()) {
LoadOperandsQueue.push_back(U);
continue;
}
// If we hit load/store with the same invariant.group metadata (and the
// same pointer operand) we can assume that value pointed by pointer
// operand didn't change.
if ((isa<LoadInst>(U) || isa<StoreInst>(U)) &&
U->getMetadata(LLVMContext::MD_invariant_group) != nullptr)
ClosestDependency = GetClosestDependency(ClosestDependency, U);
}
}
if (!ClosestDependency)
return MemDepResult::getUnknown();
if (ClosestDependency->getParent() == BB)
return MemDepResult::getDef(ClosestDependency);
// Def(U) can't be returned here because it is non-local. If local
// dependency won't be found then return nonLocal counting that the
// user will call getNonLocalPointerDependency, which will return cached
// result.
NonLocalDefsCache.try_emplace(
LI, NonLocalDepResult(ClosestDependency->getParent(),
MemDepResult::getDef(ClosestDependency), nullptr));
ReverseNonLocalDefsCache[ClosestDependency].insert(LI);
return MemDepResult::getNonLocal();
}
MemDepResult MemoryDependenceResults::getSimplePointerDependencyFrom(
const MemoryLocation &MemLoc, bool isLoad, BasicBlock::iterator ScanIt,
BasicBlock *BB, Instruction *QueryInst, unsigned *Limit) {
bool isInvariantLoad = false;
if (!Limit) {
unsigned DefaultLimit = BlockScanLimit;
return getSimplePointerDependencyFrom(MemLoc, isLoad, ScanIt, BB, QueryInst,
&DefaultLimit);
}
// We must be careful with atomic accesses, as they may allow another thread
// to touch this location, clobbering it. We are conservative: if the
// QueryInst is not a simple (non-atomic) memory access, we automatically
// return getClobber.
// If it is simple, we know based on the results of
// "Compiler testing via a theory of sound optimisations in the C11/C++11
// memory model" in PLDI 2013, that a non-atomic location can only be
// clobbered between a pair of a release and an acquire action, with no
// access to the location in between.
// Here is an example for giving the general intuition behind this rule.
// In the following code:
// store x 0;
// release action; [1]
// acquire action; [4]
// %val = load x;
// It is unsafe to replace %val by 0 because another thread may be running:
// acquire action; [2]
// store x 42;
// release action; [3]
// with synchronization from 1 to 2 and from 3 to 4, resulting in %val
// being 42. A key property of this program however is that if either
// 1 or 4 were missing, there would be a race between the store of 42
// either the store of 0 or the load (making the whole program racy).
// The paper mentioned above shows that the same property is respected
// by every program that can detect any optimization of that kind: either
// it is racy (undefined) or there is a release followed by an acquire
// between the pair of accesses under consideration.
// If the load is invariant, we "know" that it doesn't alias *any* write. We
// do want to respect mustalias results since defs are useful for value
// forwarding, but any mayalias write can be assumed to be noalias.
// Arguably, this logic should be pushed inside AliasAnalysis itself.
if (isLoad && QueryInst) {
LoadInst *LI = dyn_cast<LoadInst>(QueryInst);
if (LI && LI->getMetadata(LLVMContext::MD_invariant_load) != nullptr)
isInvariantLoad = true;
}
const DataLayout &DL = BB->getModule()->getDataLayout();
// Create a numbered basic block to lazily compute and cache instruction
// positions inside a BB. This is used to provide fast queries for relative
// position between two instructions in a BB and can be used by
// AliasAnalysis::callCapturesBefore.
OrderedBasicBlock OBB(BB);
// Return "true" if and only if the instruction I is either a non-simple
// load or a non-simple store.
auto isNonSimpleLoadOrStore = [](Instruction *I) -> bool {
if (auto *LI = dyn_cast<LoadInst>(I))
return !LI->isSimple();
if (auto *SI = dyn_cast<StoreInst>(I))
return !SI->isSimple();
return false;
};
// Return "true" if I is not a load and not a store, but it does access
// memory.
auto isOtherMemAccess = [](Instruction *I) -> bool {
return !isa<LoadInst>(I) && !isa<StoreInst>(I) && I->mayReadOrWriteMemory();
};
// Walk backwards through the basic block, looking for dependencies.
while (ScanIt != BB->begin()) {
Instruction *Inst = &*--ScanIt;
if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst))
// Debug intrinsics don't (and can't) cause dependencies.
if (isa<DbgInfoIntrinsic>(II))
continue;
// Limit the amount of scanning we do so we don't end up with quadratic
// running time on extreme testcases.
--*Limit;
if (!*Limit)
return MemDepResult::getUnknown();
if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
// If we reach a lifetime begin or end marker, then the query ends here
// because the value is undefined.
if (II->getIntrinsicID() == Intrinsic::lifetime_start) {
// FIXME: This only considers queries directly on the invariant-tagged
// pointer, not on query pointers that are indexed off of them. It'd
// be nice to handle that at some point (the right approach is to use
// GetPointerBaseWithConstantOffset).
if (AA.isMustAlias(MemoryLocation(II->getArgOperand(1)), MemLoc))
return MemDepResult::getDef(II);
continue;
}
}
// Values depend on loads if the pointers are must aliased. This means
// that a load depends on another must aliased load from the same value.
// One exception is atomic loads: a value can depend on an atomic load that
// it does not alias with when this atomic load indicates that another
// thread may be accessing the location.
if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
// While volatile access cannot be eliminated, they do not have to clobber
// non-aliasing locations, as normal accesses, for example, can be safely
// reordered with volatile accesses.
if (LI->isVolatile()) {
if (!QueryInst)
// Original QueryInst *may* be volatile
return MemDepResult::getClobber(LI);
if (isVolatile(QueryInst))
// Ordering required if QueryInst is itself volatile
return MemDepResult::getClobber(LI);
// Otherwise, volatile doesn't imply any special ordering
}
// Atomic loads have complications involved.
// A Monotonic (or higher) load is OK if the query inst is itself not
// atomic.
// FIXME: This is overly conservative.
if (LI->isAtomic() && isStrongerThanUnordered(LI->getOrdering())) {
if (!QueryInst || isNonSimpleLoadOrStore(QueryInst) ||
isOtherMemAccess(QueryInst))
return MemDepResult::getClobber(LI);
if (LI->getOrdering() != AtomicOrdering::Monotonic)
return MemDepResult::getClobber(LI);
}
MemoryLocation LoadLoc = MemoryLocation::get(LI);
// If we found a pointer, check if it could be the same as our pointer.
AliasResult R = AA.alias(LoadLoc, MemLoc);
if (isLoad) {
if (R == NoAlias)
continue;
// Must aliased loads are defs of each other.
if (R == MustAlias)
return MemDepResult::getDef(Inst);
#if 0 // FIXME: Temporarily disabled. GVN is cleverly rewriting loads
// in terms of clobbering loads, but since it does this by looking
// at the clobbering load directly, it doesn't know about any
// phi translation that may have happened along the way.
// If we have a partial alias, then return this as a clobber for the
// client to handle.
if (R == PartialAlias)
return MemDepResult::getClobber(Inst);
#endif
// Random may-alias loads don't depend on each other without a
// dependence.
continue;
}
// Stores don't depend on other no-aliased accesses.
if (R == NoAlias)
continue;
// Stores don't alias loads from read-only memory.
if (AA.pointsToConstantMemory(LoadLoc))
continue;
// Stores depend on may/must aliased loads.
return MemDepResult::getDef(Inst);
}
if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
// Atomic stores have complications involved.
// A Monotonic store is OK if the query inst is itself not atomic.
// FIXME: This is overly conservative.
if (!SI->isUnordered() && SI->isAtomic()) {
if (!QueryInst || isNonSimpleLoadOrStore(QueryInst) ||
isOtherMemAccess(QueryInst))
return MemDepResult::getClobber(SI);
if (SI->getOrdering() != AtomicOrdering::Monotonic)
return MemDepResult::getClobber(SI);
}
// FIXME: this is overly conservative.
// While volatile access cannot be eliminated, they do not have to clobber
// non-aliasing locations, as normal accesses can for example be reordered
// with volatile accesses.
if (SI->isVolatile())
if (!QueryInst || isNonSimpleLoadOrStore(QueryInst) ||
isOtherMemAccess(QueryInst))
return MemDepResult::getClobber(SI);
// If alias analysis can tell that this store is guaranteed to not modify
// the query pointer, ignore it. Use getModRefInfo to handle cases where
// the query pointer points to constant memory etc.
if (!isModOrRefSet(AA.getModRefInfo(SI, MemLoc)))
continue;
// Ok, this store might clobber the query pointer. Check to see if it is
// a must alias: in this case, we want to return this as a def.
// FIXME: Use ModRefInfo::Must bit from getModRefInfo call above.
MemoryLocation StoreLoc = MemoryLocation::get(SI);
// If we found a pointer, check if it could be the same as our pointer.
AliasResult R = AA.alias(StoreLoc, MemLoc);
if (R == NoAlias)
continue;
if (R == MustAlias)
return MemDepResult::getDef(Inst);
if (isInvariantLoad)
continue;
return MemDepResult::getClobber(Inst);
}
// If this is an allocation, and if we know that the accessed pointer is to
// the allocation, return Def. This means that there is no dependence and
// the access can be optimized based on that. For example, a load could
// turn into undef. Note that we can bypass the allocation itself when
// looking for a clobber in many cases; that's an alias property and is
// handled by BasicAA.
if (isa<AllocaInst>(Inst) || isNoAliasFn(Inst, &TLI)) {
const Value *AccessPtr = GetUnderlyingObject(MemLoc.Ptr, DL);
if (AccessPtr == Inst || AA.isMustAlias(Inst, AccessPtr))
return MemDepResult::getDef(Inst);
}
if (isInvariantLoad)
continue;
// A release fence requires that all stores complete before it, but does
// not prevent the reordering of following loads or stores 'before' the
// fence. As a result, we look past it when finding a dependency for
// loads. DSE uses this to find preceeding stores to delete and thus we
// can't bypass the fence if the query instruction is a store.
if (FenceInst *FI = dyn_cast<FenceInst>(Inst))
if (isLoad && FI->getOrdering() == AtomicOrdering::Release)
continue;
// See if this instruction (e.g. a call or vaarg) mod/ref's the pointer.
ModRefInfo MR = AA.getModRefInfo(Inst, MemLoc);
// If necessary, perform additional analysis.
if (isModAndRefSet(MR))
MR = AA.callCapturesBefore(Inst, MemLoc, &DT, &OBB);
switch (clearMust(MR)) {
case ModRefInfo::NoModRef:
// If the call has no effect on the queried pointer, just ignore it.
continue;
case ModRefInfo::Mod:
return MemDepResult::getClobber(Inst);
case ModRefInfo::Ref:
// If the call is known to never store to the pointer, and if this is a
// load query, we can safely ignore it (scan past it).
if (isLoad)
continue;
LLVM_FALLTHROUGH;
default:
// Otherwise, there is a potential dependence. Return a clobber.
return MemDepResult::getClobber(Inst);
}
}
// No dependence found. If this is the entry block of the function, it is
// unknown, otherwise it is non-local.
if (BB != &BB->getParent()->getEntryBlock())
return MemDepResult::getNonLocal();
return MemDepResult::getNonFuncLocal();
}
MemDepResult MemoryDependenceResults::getDependency(Instruction *QueryInst) {
Instruction *ScanPos = QueryInst;
// Check for a cached result
MemDepResult &LocalCache = LocalDeps[QueryInst];
// If the cached entry is non-dirty, just return it. Note that this depends
// on MemDepResult's default constructing to 'dirty'.
if (!LocalCache.isDirty())
return LocalCache;
// Otherwise, if we have a dirty entry, we know we can start the scan at that
// instruction, which may save us some work.
if (Instruction *Inst = LocalCache.getInst()) {
ScanPos = Inst;
RemoveFromReverseMap(ReverseLocalDeps, Inst, QueryInst);
}
BasicBlock *QueryParent = QueryInst->getParent();
// Do the scan.
if (BasicBlock::iterator(QueryInst) == QueryParent->begin()) {
// No dependence found. If this is the entry block of the function, it is
// unknown, otherwise it is non-local.
if (QueryParent != &QueryParent->getParent()->getEntryBlock())
LocalCache = MemDepResult::getNonLocal();
else
LocalCache = MemDepResult::getNonFuncLocal();
} else {
MemoryLocation MemLoc;
ModRefInfo MR = GetLocation(QueryInst, MemLoc, TLI);
if (MemLoc.Ptr) {
// If we can do a pointer scan, make it happen.
bool isLoad = !isModSet(MR);
if (auto *II = dyn_cast<IntrinsicInst>(QueryInst))
isLoad |= II->getIntrinsicID() == Intrinsic::lifetime_start;
LocalCache = getPointerDependencyFrom(
MemLoc, isLoad, ScanPos->getIterator(), QueryParent, QueryInst);
} else if (isa<CallInst>(QueryInst) || isa<InvokeInst>(QueryInst)) {
CallSite QueryCS(QueryInst);
bool isReadOnly = AA.onlyReadsMemory(QueryCS);
LocalCache = getCallSiteDependencyFrom(
QueryCS, isReadOnly, ScanPos->getIterator(), QueryParent);
} else
// Non-memory instruction.
LocalCache = MemDepResult::getUnknown();
}
// Remember the result!
if (Instruction *I = LocalCache.getInst())
ReverseLocalDeps[I].insert(QueryInst);
return LocalCache;
}
#ifndef NDEBUG
/// This method is used when -debug is specified to verify that cache arrays
/// are properly kept sorted.
static void AssertSorted(MemoryDependenceResults::NonLocalDepInfo &Cache,
int Count = -1) {
if (Count == -1)
Count = Cache.size();
assert(std::is_sorted(Cache.begin(), Cache.begin() + Count) &&
"Cache isn't sorted!");
}
#endif
const MemoryDependenceResults::NonLocalDepInfo &
MemoryDependenceResults::getNonLocalCallDependency(CallSite QueryCS) {
assert(getDependency(QueryCS.getInstruction()).isNonLocal() &&
"getNonLocalCallDependency should only be used on calls with "
"non-local deps!");
PerInstNLInfo &CacheP = NonLocalDeps[QueryCS.getInstruction()];
NonLocalDepInfo &Cache = CacheP.first;
// This is the set of blocks that need to be recomputed. In the cached case,
// this can happen due to instructions being deleted etc. In the uncached
// case, this starts out as the set of predecessors we care about.
SmallVector<BasicBlock *, 32> DirtyBlocks;
if (!Cache.empty()) {
// Okay, we have a cache entry. If we know it is not dirty, just return it
// with no computation.
if (!CacheP.second) {
++NumCacheNonLocal;
return Cache;
}
// If we already have a partially computed set of results, scan them to
// determine what is dirty, seeding our initial DirtyBlocks worklist.
for (auto &Entry : Cache)
if (Entry.getResult().isDirty())
DirtyBlocks.push_back(Entry.getBB());
// Sort the cache so that we can do fast binary search lookups below.
llvm::sort(Cache.begin(), Cache.end());
++NumCacheDirtyNonLocal;
// cerr << "CACHED CASE: " << DirtyBlocks.size() << " dirty: "
// << Cache.size() << " cached: " << *QueryInst;
} else {
// Seed DirtyBlocks with each of the preds of QueryInst's block.
BasicBlock *QueryBB = QueryCS.getInstruction()->getParent();
for (BasicBlock *Pred : PredCache.get(QueryBB))
DirtyBlocks.push_back(Pred);
++NumUncacheNonLocal;
}
// isReadonlyCall - If this is a read-only call, we can be more aggressive.
bool isReadonlyCall = AA.onlyReadsMemory(QueryCS);
SmallPtrSet<BasicBlock *, 32> Visited;
unsigned NumSortedEntries = Cache.size();
LLVM_DEBUG(AssertSorted(Cache));
// Iterate while we still have blocks to update.
while (!DirtyBlocks.empty()) {
BasicBlock *DirtyBB = DirtyBlocks.back();
DirtyBlocks.pop_back();
// Already processed this block?
if (!Visited.insert(DirtyBB).second)
continue;
// Do a binary search to see if we already have an entry for this block in
// the cache set. If so, find it.
LLVM_DEBUG(AssertSorted(Cache, NumSortedEntries));
NonLocalDepInfo::iterator Entry =
std::upper_bound(Cache.begin(), Cache.begin() + NumSortedEntries,
NonLocalDepEntry(DirtyBB));
if (Entry != Cache.begin() && std::prev(Entry)->getBB() == DirtyBB)
--Entry;
NonLocalDepEntry *ExistingResult = nullptr;
if (Entry != Cache.begin() + NumSortedEntries &&
Entry->getBB() == DirtyBB) {
// If we already have an entry, and if it isn't already dirty, the block
// is done.
if (!Entry->getResult().isDirty())
continue;
// Otherwise, remember this slot so we can update the value.
ExistingResult = &*Entry;
}
// If the dirty entry has a pointer, start scanning from it so we don't have
// to rescan the entire block.
BasicBlock::iterator ScanPos = DirtyBB->end();
if (ExistingResult) {
if (Instruction *Inst = ExistingResult->getResult().getInst()) {
ScanPos = Inst->getIterator();
// We're removing QueryInst's use of Inst.
RemoveFromReverseMap(ReverseNonLocalDeps, Inst,
QueryCS.getInstruction());
}
}
// Find out if this block has a local dependency for QueryInst.
MemDepResult Dep;
if (ScanPos != DirtyBB->begin()) {
Dep =
getCallSiteDependencyFrom(QueryCS, isReadonlyCall, ScanPos, DirtyBB);
} else if (DirtyBB != &DirtyBB->getParent()->getEntryBlock()) {
// No dependence found. If this is the entry block of the function, it is
// a clobber, otherwise it is unknown.
Dep = MemDepResult::getNonLocal();
} else {
Dep = MemDepResult::getNonFuncLocal();
}
// If we had a dirty entry for the block, update it. Otherwise, just add
// a new entry.
if (ExistingResult)
ExistingResult->setResult(Dep);
else
Cache.push_back(NonLocalDepEntry(DirtyBB, Dep));
// If the block has a dependency (i.e. it isn't completely transparent to
// the value), remember the association!
if (!Dep.isNonLocal()) {
// Keep the ReverseNonLocalDeps map up to date so we can efficiently
// update this when we remove instructions.
if (Instruction *Inst = Dep.getInst())
ReverseNonLocalDeps[Inst].insert(QueryCS.getInstruction());
} else {
// If the block *is* completely transparent to the load, we need to check
// the predecessors of this block. Add them to our worklist.
for (BasicBlock *Pred : PredCache.get(DirtyBB))
DirtyBlocks.push_back(Pred);
}
}
return Cache;
}
void MemoryDependenceResults::getNonLocalPointerDependency(
Instruction *QueryInst, SmallVectorImpl<NonLocalDepResult> &Result) {
const MemoryLocation Loc = MemoryLocation::get(QueryInst);
bool isLoad = isa<LoadInst>(QueryInst);
BasicBlock *FromBB = QueryInst->getParent();
assert(FromBB);
assert(Loc.Ptr->getType()->isPointerTy() &&
"Can't get pointer deps of a non-pointer!");
Result.clear();
{
// Check if there is cached Def with invariant.group.
auto NonLocalDefIt = NonLocalDefsCache.find(QueryInst);
if (NonLocalDefIt != NonLocalDefsCache.end()) {
Result.push_back(NonLocalDefIt->second);
ReverseNonLocalDefsCache[NonLocalDefIt->second.getResult().getInst()]
.erase(QueryInst);
NonLocalDefsCache.erase(NonLocalDefIt);
return;
}
}
// This routine does not expect to deal with volatile instructions.
// Doing so would require piping through the QueryInst all the way through.
// TODO: volatiles can't be elided, but they can be reordered with other
// non-volatile accesses.
// We currently give up on any instruction which is ordered, but we do handle
// atomic instructions which are unordered.
// TODO: Handle ordered instructions
auto isOrdered = [](Instruction *Inst) {
if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
return !LI->isUnordered();
} else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
return !SI->isUnordered();
}
return false;
};
if (isVolatile(QueryInst) || isOrdered(QueryInst)) {
Result.push_back(NonLocalDepResult(FromBB, MemDepResult::getUnknown(),
const_cast<Value *>(Loc.Ptr)));
return;
}
const DataLayout &DL = FromBB->getModule()->getDataLayout();
PHITransAddr Address(const_cast<Value *>(Loc.Ptr), DL, &AC);
// This is the set of blocks we've inspected, and the pointer we consider in
// each block. Because of critical edges, we currently bail out if querying
// a block with multiple different pointers. This can happen during PHI
// translation.
DenseMap<BasicBlock *, Value *> Visited;
if (getNonLocalPointerDepFromBB(QueryInst, Address, Loc, isLoad, FromBB,
Result, Visited, true))
return;
Result.clear();
Result.push_back(NonLocalDepResult(FromBB, MemDepResult::getUnknown(),
const_cast<Value *>(Loc.Ptr)));
}
/// Compute the memdep value for BB with Pointer/PointeeSize using either
/// cached information in Cache or by doing a lookup (which may use dirty cache
/// info if available).
///
/// If we do a lookup, add the result to the cache.
MemDepResult MemoryDependenceResults::GetNonLocalInfoForBlock(
Instruction *QueryInst, const MemoryLocation &Loc, bool isLoad,
BasicBlock *BB, NonLocalDepInfo *Cache, unsigned NumSortedEntries) {
// Do a binary search to see if we already have an entry for this block in
// the cache set. If so, find it.
NonLocalDepInfo::iterator Entry = std::upper_bound(
Cache->begin(), Cache->begin() + NumSortedEntries, NonLocalDepEntry(BB));
if (Entry != Cache->begin() && (Entry - 1)->getBB() == BB)
--Entry;
NonLocalDepEntry *ExistingResult = nullptr;
if (Entry != Cache->begin() + NumSortedEntries && Entry->getBB() == BB)
ExistingResult = &*Entry;
// If we have a cached entry, and it is non-dirty, use it as the value for
// this dependency.
if (ExistingResult && !ExistingResult->getResult().isDirty()) {
++NumCacheNonLocalPtr;
return ExistingResult->getResult();
}
// Otherwise, we have to scan for the value. If we have a dirty cache
// entry, start scanning from its position, otherwise we scan from the end
// of the block.
BasicBlock::iterator ScanPos = BB->end();