.. automodule:: deap.algorithms
These are complete boxed algorithms that are somewhat limited to the very basic evolutionary computation concepts. All algorithms accept, in addition to their arguments, an initialized :class:`~deap.tools.Statistics` object to maintain stats of the evolution, an initialized :class:`~deap.tools.HallOfFame` to hold the best individual(s) to appear in the population, and a boolean verbose to specify wether to log what is happening during the evolution or not.
.. autofunction:: deap.algorithms.eaSimple(population, toolbox, cxpb, mutpb, ngen[, stats, halloffame, verbose])
.. autofunction:: deap.algorithms.eaMuPlusLambda(population, toolbox, mu, lambda_, cxpb, mutpb, ngen[, stats, halloffame, verbose])
.. autofunction:: deap.algorithms.eaMuCommaLambda(population, toolbox, mu, lambda_, cxpb, mutpb, ngen[, stats, halloffame, verbose])
.. autofunction:: deap.algorithms.eaGenerateUpdate(toolbox, ngen[, stats, halloffame, verbose])
Variations are smaller parts of the algorithms that can be used separately to build more complex algorithms.
.. autofunction:: deap.algorithms.varAnd
.. autofunction:: deap.algorithms.varOr
.. automodule:: deap.cma
.. autoclass:: deap.cma.Strategy(centroid, sigma[, **kargs]) :members:
.. autoclass:: deap.cma.StrategyOnePlusLambda(parent, sigma[, **kargs]) :members:
.. autoclass:: deap.cma.StrategyMultiObjective(population, sigma[, **kargs]) :members: