forked from tidyverse/ggplot2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgeom_contour.Rd
263 lines (227 loc) · 8.43 KB
/
geom_contour.Rd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/geom-contour.r, R/stat-contour.r
\name{geom_contour}
\alias{geom_contour}
\alias{geom_contour_filled}
\alias{stat_contour}
\alias{stat_contour_filled}
\title{2D contours of a 3D surface}
\usage{
geom_contour(
mapping = NULL,
data = NULL,
stat = "contour",
position = "identity",
...,
bins = NULL,
binwidth = NULL,
breaks = NULL,
lineend = "butt",
linejoin = "round",
linemitre = 10,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE
)
geom_contour_filled(
mapping = NULL,
data = NULL,
stat = "contour_filled",
position = "identity",
...,
bins = NULL,
binwidth = NULL,
breaks = NULL,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE
)
stat_contour(
mapping = NULL,
data = NULL,
geom = "contour",
position = "identity",
...,
bins = NULL,
binwidth = NULL,
breaks = NULL,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE
)
stat_contour_filled(
mapping = NULL,
data = NULL,
geom = "contour_filled",
position = "identity",
...,
bins = NULL,
binwidth = NULL,
breaks = NULL,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE
)
}
\arguments{
\item{mapping}{Set of aesthetic mappings created by \code{\link[=aes]{aes()}} or
\code{\link[=aes_]{aes_()}}. If specified and \code{inherit.aes = TRUE} (the
default), it is combined with the default mapping at the top level of the
plot. You must supply \code{mapping} if there is no plot mapping.}
\item{data}{The data to be displayed in this layer. There are three
options:
If \code{NULL}, the default, the data is inherited from the plot
data as specified in the call to \code{\link[=ggplot]{ggplot()}}.
A \code{data.frame}, or other object, will override the plot
data. All objects will be fortified to produce a data frame. See
\code{\link[=fortify]{fortify()}} for which variables will be created.
A \code{function} will be called with a single argument,
the plot data. The return value must be a \code{data.frame}, and
will be used as the layer data. A \code{function} can be created
from a \code{formula} (e.g. \code{~ head(.x, 10)}).}
\item{stat}{The statistical transformation to use on the data for this
layer, as a string.}
\item{position}{Position adjustment, either as a string, or the result of
a call to a position adjustment function.}
\item{...}{Other arguments passed on to \code{\link[=layer]{layer()}}. These are
often aesthetics, used to set an aesthetic to a fixed value, like
\code{colour = "red"} or \code{size = 3}. They may also be parameters
to the paired geom/stat.}
\item{bins}{Number of contour bins. Overridden by \code{binwidth}.}
\item{binwidth}{The width of the contour bins. Overridden by \code{breaks}.}
\item{breaks}{Numeric vector to set the contour breaks. Overrides \code{binwidth}
and \code{bins}. By default, this is a vector of length ten with \code{\link[=pretty]{pretty()}}
breaks.}
\item{lineend}{Line end style (round, butt, square).}
\item{linejoin}{Line join style (round, mitre, bevel).}
\item{linemitre}{Line mitre limit (number greater than 1).}
\item{na.rm}{If \code{FALSE}, the default, missing values are removed with
a warning. If \code{TRUE}, missing values are silently removed.}
\item{show.legend}{logical. Should this layer be included in the legends?
\code{NA}, the default, includes if any aesthetics are mapped.
\code{FALSE} never includes, and \code{TRUE} always includes.
It can also be a named logical vector to finely select the aesthetics to
display.}
\item{inherit.aes}{If \code{FALSE}, overrides the default aesthetics,
rather than combining with them. This is most useful for helper functions
that define both data and aesthetics and shouldn't inherit behaviour from
the default plot specification, e.g. \code{\link[=borders]{borders()}}.}
\item{geom}{The geometric object to use display the data}
}
\description{
ggplot2 can not draw true 3D surfaces, but you can use \code{geom_contour()},
\code{geom_contour_filled()}, and \code{\link[=geom_tile]{geom_tile()}} to visualise 3D surfaces in 2D. To
specify a valid surface, the data must contain \code{x}, \code{y}, and \code{z} coordinates,
and each unique combination of \code{x} and \code{y} can appear at most once.
Contouring requires that the points can be rearranged so that the \code{z} values
form a matrix, with rows corresponding to unique \code{x} values, and columns
corresponding to unique \code{y} values. Missing entries are allowed, but contouring
will only be done on cells of the grid with all four \code{z} values present. If
your data is irregular, you can interpolate to a grid before visualising
using the \code{\link[interp:interp]{interp::interp()}} function from the \code{interp} package
(or one of the interpolating functions from the \code{akima} package.)
}
\section{Aesthetics}{
\code{geom_contour()} understands the following aesthetics (required aesthetics are in bold):
\itemize{
\item \strong{\code{x}}
\item \strong{\code{y}}
\item \code{alpha}
\item \code{colour}
\item \code{group}
\item \code{linetype}
\item \code{size}
\item \code{weight}
}
Learn more about setting these aesthetics in \code{vignette("ggplot2-specs")}.
\code{geom_contour_filled()} understands the following aesthetics (required aesthetics are in bold):
\itemize{
\item \strong{\code{x}}
\item \strong{\code{y}}
\item \code{alpha}
\item \code{colour}
\item \code{fill}
\item \code{group}
\item \code{linetype}
\item \code{size}
\item \code{subgroup}
}
Learn more about setting these aesthetics in \code{vignette("ggplot2-specs")}.
\code{stat_contour()} understands the following aesthetics (required aesthetics are in bold):
\itemize{
\item \strong{\code{x}}
\item \strong{\code{y}}
\item \strong{\code{z}}
\item \code{group}
\item \code{order}
}
Learn more about setting these aesthetics in \code{vignette("ggplot2-specs")}.
\code{stat_contour_filled()} understands the following aesthetics (required aesthetics are in bold):
\itemize{
\item \strong{\code{x}}
\item \strong{\code{y}}
\item \strong{\code{z}}
\item \code{fill}
\item \code{group}
\item \code{order}
}
Learn more about setting these aesthetics in \code{vignette("ggplot2-specs")}.
}
\section{Computed variables}{
The computed variables differ somewhat for contour lines (computed by
\code{stat_contour()}) and contour bands (filled contours, computed by \code{stat_contour_filled()}).
The variables \code{nlevel} and \code{piece} are available for both, whereas \code{level_low}, \code{level_high},
and \code{level_mid} are only available for bands. The variable \code{level} is a numeric or a factor
depending on whether lines or bands are calculated.
\describe{
\item{\code{level}}{Height of contour. For contour lines, this is numeric vector that
represents bin boundaries. For contour bands, this is an ordered factor that
represents bin ranges.}
\item{\code{level_low}, \code{level_high}, \code{level_mid}}{(contour bands only) Lower and upper
bin boundaries for each band, as well the mid point between the boundaries.}
\item{\code{nlevel}}{Height of contour, scaled to maximum of 1.}
\item{\code{piece}}{Contour piece (an integer).}
}
}
\examples{
# Basic plot
v <- ggplot(faithfuld, aes(waiting, eruptions, z = density))
v + geom_contour()
# Or compute from raw data
ggplot(faithful, aes(waiting, eruptions)) +
geom_density_2d()
\donttest{
# use geom_contour_filled() for filled contours
v + geom_contour_filled()
# Setting bins creates evenly spaced contours in the range of the data
v + geom_contour(bins = 3)
v + geom_contour(bins = 5)
# Setting binwidth does the same thing, parameterised by the distance
# between contours
v + geom_contour(binwidth = 0.01)
v + geom_contour(binwidth = 0.001)
# Other parameters
v + geom_contour(aes(colour = after_stat(level)))
v + geom_contour(colour = "red")
v + geom_raster(aes(fill = density)) +
geom_contour(colour = "white")
# Irregular data
if (requireNamespace("interp")) {
# Use a dataset from the interp package
data(franke, package = "interp")
origdata <- as.data.frame(interp::franke.data(1, 1, franke))
grid <- with(origdata, interp::interp(x, y, z))
griddf <- subset(data.frame(x = rep(grid$x, nrow(grid$z)),
y = rep(grid$y, each = ncol(grid$z)),
z = as.numeric(grid$z)),
!is.na(z))
ggplot(griddf, aes(x, y, z = z)) +
geom_contour_filled() +
geom_point(data = origdata)
} else
message("Irregular data requires the 'interp' package")
}
}
\seealso{
\code{\link[=geom_density_2d]{geom_density_2d()}}: 2d density contours
}