-
Notifications
You must be signed in to change notification settings - Fork 0
/
convLSTM.py
332 lines (283 loc) · 13 KB
/
convLSTM.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
"""
Reference: https://github.com/iwyoo/ConvLSTMCell-tensorflow
"""
import tensorflow as tf
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import variable_scope as vs
from tensorflow.python.ops.math_ops import sigmoid
from tensorflow.python.ops.math_ops import tanh
from tensorflow.python.platform import tf_logging as logging
from tensorflow.python.ops import rnn_cell
from tensorflow.python.ops import init_ops
from tensorflow.python.ops.rnn_cell import LSTMStateTuple
from tensorflow.python.util import nest
# Future : Replace it with tensorflow.python.util.nest
import collections
import six
def _is_sequence(seq):
return (isinstance(seq, collections.Sequence)
and not isinstance(seq, six.string_types))
def ln(input, s, b, epsilon = 1e-5, max = 1000):
""" Layer normalizes a 4D tensor along its second axis, which corresponds to batch """
m, v = tf.nn.moments(input, [1,2,3], keep_dims=True) # for conv case ?
normalised_input = (input - m) / tf.sqrt(v + epsilon)
return normalised_input * s + b
class ConvGRUCell(rnn_cell.RNNCell):
"""Gated Recurrent Unit cell (cf. http://arxiv.org/abs/1406.1078)."""
def __init__(self, num_units, k_size=3, height=23, width=30, input_size=None, activation=tanh, initializer=None):
if input_size is not None:
logging.warn("%s: The input_size parameter is deprecated.", self)
self._num_units = num_units
self._activation = activation
self._initializer = initializer
self._k_size = k_size
self._height = height
self._width = width
@property
def state_size(self):
return self._num_units
@property
def output_size(self):
return self._num_units
def zero_state(self, batch_size=3, dtype=None):
return tf.zeros([batch_size, self._height, self._width, self._num_units])
def __call__(self, inputs, state, scope=None):
"""Gated recurrent unit (GRU) with nunits cells."""
with vs.variable_scope(scope or type(self).__name__): # "GRUCell"
with vs.variable_scope("Gates"): # Reset gate and update gate.
# We start with bias of 1.0 to not reset and not update.
r, u = array_ops.split(3, 2, _conv([inputs, state],
2 * self._num_units, self._k_size, True, initializer=self._initializer))
r, u = sigmoid(r), sigmoid(u)
with vs.variable_scope("Candidate"):
c = self._activation(_conv([inputs, r * state],
self._num_units, self._k_size, True, initializer=self._initializer))
new_h = u * state + (1 - u) * c
return new_h, new_h
class ConvLSTMCell(rnn_cell.RNNCell):
""" Convolutional LSTM network cell (ConvLSTM).
The implementation is based on http://arxiv.org/abs/1506.04214.
and BasicLSTMCell in TensorFlow.
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/ops/rnn_cell.py
Future : Peephole connection will be added as the full LSTMCell
implementation of TensorFlow.
"""
def __init__(self, num_units, k_size=3, batch_size=4, height=23, width=30, input_size=None,
use_peepholes=False, cell_clip=None,
initializer=None, num_proj=None, proj_clip=None,
num_unit_shards=1, num_proj_shards=1,
forget_bias=1.0, state_is_tuple=False,
activation=tanh):
if not state_is_tuple:
logging.warn(
"%s: Using a concatenated state is slower and will soon be "
"deprecated. Use state_is_tuple=True." % self)
if input_size is not None:
logging.warn("%s: The input_size parameter is deprecated." % self)
#self._use_peepholes = use_peepholes
#self._cell_clip = cell_clip
#self._initializer = initializer
#self._num_proj = num_proj
#self._num_unit_shards = num_unit_shards
#self._num_proj_shards = num_proj_shards
self._num_units = num_units
self._forget_bias = forget_bias
self._state_is_tuple = state_is_tuple
self._activation = activation
self._initializer = initializer
self._k_size = k_size
self._height = height
self._width = width
self._batch_size = batch_size
@property
def state_size(self):
return (LSTMStateTuple(self._num_units, self._num_units)
if self._state_is_tuple else 2 * self._num_units)
@property
def output_size(self):
return self._num_units
def zero_state(self, batch_size=4, dtype=None):
return tf.zeros([batch_size, self._height, self._width, self._num_units*2])
def __call__(self, inputs, state, scope=None):
"""Convolutional Long short-term memory cell (ConvLSTM)."""
with vs.variable_scope(scope or type(self).__name__): # "ConvLSTMCell"
if self._state_is_tuple:
c, h = state
else:
c, h = array_ops.split(3, 2, state)
# batch_size * height * width * channel
concat = _conv([inputs, h], 4 * self._num_units, self._k_size, True, initializer=self._initializer)
# i = input_gate, j = new_input, f = forget_gate, o = output_gate
i, j, f, o = array_ops.split(3, 4, concat)
new_c = (c * sigmoid(f + self._forget_bias) + sigmoid(i) *
self._activation(j))
new_h = self._activation(new_c) * sigmoid(o)
if self._state_is_tuple:
new_state = LSTMStateTuple(new_c, new_h)
else:
new_state = array_ops.concat(3, [new_c, new_h])
return new_h, new_state
class LNConvLSTMCell(rnn_cell.RNNCell):
""" Convolutional LSTM network cell (ConvLSTM).
The implementation is based on http://arxiv.org/abs/1506.04214.
and BasicLSTMCell in TensorFlow.
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/ops/rnn_cell.py
Future : Peephole connection will be added as the full LSTMCell
implementation of TensorFlow.
"""
def __init__(self, num_units, k_size=3, batch_size=4, height=23, width=30, input_size=None,
use_peepholes=False, cell_clip=None,
initializer=None, num_proj=None, proj_clip=None,
num_unit_shards=1, num_proj_shards=1,
forget_bias=1.0, state_is_tuple=False,
activation=tanh):
if not state_is_tuple:
logging.warn(
"%s: Using a concatenated state is slower and will soon be "
"deprecated. Use state_is_tuple=True." % self)
if input_size is not None:
logging.warn("%s: The input_size parameter is deprecated." % self)
#self._use_peepholes = use_peepholes
#self._cell_clip = cell_clip
#self._initializer = initializer
#self._num_proj = num_proj
#self._num_unit_shards = num_unit_shards
#self._num_proj_shards = num_proj_shards
self._num_units = num_units
self._forget_bias = forget_bias
self._state_is_tuple = state_is_tuple
self._activation = activation
self._initializer = initializer
self._k_size = k_size
self._height = height
self._width = width
self._batch_size = batch_size
@property
def state_size(self):
return (LSTMStateTuple(self._num_units, self._num_units)
if self._state_is_tuple else 2 * self._num_units)
@property
def output_size(self):
return self._num_units
def zero_state(self, batch_size=4, dtype=None):
return tf.zeros([batch_size, self._height, self._width, self._num_units*2])
def __call__(self, inputs, state, scope=None):
"""Convolutional Long short-term memory cell (ConvLSTM)."""
with vs.variable_scope(scope or type(self).__name__): # "ConvLSTMCell"
if self._state_is_tuple:
c, h = state
else:
c, h = array_ops.split(3, 2, state)
s1 = vs.get_variable("s1", initializer=tf.ones([self._height, self._width, 4 * self._num_units]), dtype=tf.float32)
s2 = vs.get_variable("s2", initializer=tf.ones([self._height, self._width, 4 * self._num_units]), dtype=tf.float32)
# s3 = vs.get_variable("s3", initializer=tf.ones([self._batch_size, self._num_units]), dtype=tf.float32)
b1 = vs.get_variable("b1", initializer=tf.zeros([self._height, self._width, 4 * self._num_units]), dtype=tf.float32)
b2 = vs.get_variable("b2", initializer=tf.zeros([self._height, self._width, 4 * self._num_units]), dtype=tf.float32)
# b3 = vs.get_variable("b3", initializer=tf.zeros([self._batch_size, self._num_units]), dtype=tf.float32)
input_below_ = _conv([inputs], 4 * self._num_units, self._k_size, False, initializer=self._initializer, scope="out_1")
input_below_ = ln(input_below_, s1, b1)
state_below_ = _conv([h], 4 * self._num_units, self._k_size, False, initializer=self._initializer, scope="out_2")
state_below_ = ln(state_below_, s2, b2)
lstm_matrix = tf.add(input_below_, state_below_)
i, j, f, o = array_ops.split(3, 4, lstm_matrix)
# batch_size * height * width * channel
# concat = _conv([inputs, h], 4 * self._num_units, self._k_size, True, initializer=self._initializer)
# i = input_gate, j = new_input, f = forget_gate, o = output_gate
# i, j, f, o = array_ops.split(3, 4, lstm_matrix)
new_c = (c * sigmoid(f + self._forget_bias) + sigmoid(i) *
self._activation(j))
new_h = self._activation(new_c) * sigmoid(o)
if self._state_is_tuple:
new_state = LSTMStateTuple(new_c, new_h)
else:
new_state = array_ops.concat(3, [new_c, new_h])
return new_h, new_state
class MultiRNNCell(rnn_cell.RNNCell):
def __init__(self, cells, state_is_tuple=False):
"""
Stacked convLSTM , modified from ops.rnn_cell MultiRNNCell
"""
if not cells:
raise ValueError("Must specify at least one cell for MultiRNNCell.")
self._cells = cells
self._state_is_tuple = state_is_tuple
self._num_units = cells[0].output_size
if not state_is_tuple:
if any(nest.is_sequence(c.state_size) for c in self._cells):
raise ValueError("Some cells return tuples of states, but the flag "
"state_is_tuple is not set. State sizes are: %s"
% str([c.state_size for c in self._cells]))
@property
def state_size(self):
if self._state_is_tuple:
return tuple(cell.state_size for cell in self._cells)
else:
return sum([cell.state_size for cell in self._cells])
@property
def output_size(self):
return self._cells[-1].output_size
def zero_state(self, batch_size=3, dtype=None, height=23, width=30):
if self._state_is_tuple:
return [tf.zeros(1, batch_size, height, width) for i in range(len(self._cells))]
else:
return tf.zeros([len(self._cells), batch_size, height, width, self._num_units*2])
def __call__(self, inputs, state, scope=None):
"""Run this multi-layer cell on inputs, starting from state."""
with vs.variable_scope(scope or type(self).__name__): # "MultiRNNCell"
cur_state_pos = 0
cur_inp = inputs
new_states = []
for i, cell in enumerate(self._cells):
with vs.variable_scope("Cell%d" % i):
if self._state_is_tuple:
if not nest.is_sequence(state):
raise ValueError(
"Expected state to be a tuple of length %d, but received: %s"
% (len(self.state_size), state))
cur_state = state[i]
else:
# print("STATE",state)
"""
cur_state = array_ops.slice(
state, [0, cur_state_pos], [-1, cell.state_size])
"""
cur_state = array_ops.unpack(state)[i]
# cur_state_pos += cell.state_size
cur_inp, new_state = cell(cur_inp, cur_state)
new_states.append(new_state)
"""
new_states = (tuple(new_states) if self._state_is_tuple
else array_ops.concat(1, new_states))
"""
new_states = array_ops.pack(new_states)
return cur_inp, new_states
def _conv(args, output_size, k_size, bias=True, bias_start=0.0, initializer=None, scope=None):
if args is None or (_is_sequence(args) and not args):
raise ValueError("`args` must be specified")
if not _is_sequence(args):
args = [args]
# Calculate the total size of arguments on dimension 3.
# (batch_size x height x width x arg_size)
total_arg_size = 0
shapes = [a.get_shape().as_list() for a in args]
height = shapes[0][1]
width = shapes[0][2]
for shape in shapes:
if len(shape) != 4:
raise ValueError("Conv is expecting 3D arguments: %s" % str(shapes))
if not shape[3]:
raise ValueError("Conv expects shape[3] of arguments: %s" % str(shapes))
if shape[1] == height and shape[2] == width:
total_arg_size += shape[3]
else :
raise ValueError("Inconsistent height and width size in arguments: %s" % str(shapes))
with vs.variable_scope(scope or "Conv"):
kernel = vs.get_variable("Kernel", [k_size, k_size, total_arg_size, output_size], initializer=initializer)
if len(args) == 1:
res = tf.nn.conv2d(args[0], kernel, [1, 1, 1, 1], padding='SAME')
else:
res = tf.nn.conv2d(array_ops.concat(3, args), kernel, [1, 1, 1, 1], padding='SAME')
if not bias: return res
bias_term = vs.get_variable( "Bias", [output_size],
initializer=init_ops.constant_initializer(bias_start))
return res + bias_term