forked from Lightning-AI/litgpt
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathadapter.py
297 lines (242 loc) · 11.3 KB
/
adapter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
import os
import sys
import time
from pathlib import Path
from typing import Dict, List, Optional, Tuple
import lightning as L
import torch
from lightning.fabric.strategies import FSDPStrategy, XLAStrategy
# support running without installing as a package
wd = Path(__file__).parent.parent.resolve()
sys.path.append(str(wd))
from generate.base import generate
from lit_gpt.adapter import GPT, Block, Config, adapter_filter, mark_only_adapter_as_trainable
from lit_gpt.speed_monitor import SpeedMonitorFabric as SpeedMonitor
from lit_gpt.speed_monitor import estimate_flops, measure_flops
from lit_gpt.tokenizer import Tokenizer
from lit_gpt.utils import check_valid_checkpoint_dir, chunked_cross_entropy, lazy_load, num_parameters, step_csv_logger
from scripts.prepare_alpaca import generate_prompt
eval_interval = 600
save_interval = 1000
eval_iters = 100
log_interval = 1
devices = 1
# change this value to force a maximum sequence length
override_max_seq_length = None
# Hyperparameters
learning_rate = 3e-3
batch_size = 64 / devices
micro_batch_size = 4
gradient_accumulation_iters = batch_size // micro_batch_size
assert gradient_accumulation_iters > 0
epoch_size = 50000 # train dataset size
num_epochs = 5
max_iters = num_epochs * (epoch_size // micro_batch_size) // devices
weight_decay = 0.02
warmup_steps = 2 * (epoch_size // micro_batch_size) // devices // gradient_accumulation_iters # 2 epochs
hparams = {k: v for k, v in locals().items() if isinstance(v, (int, float, str)) and not k.startswith("_")}
def setup(
data_dir: Path = Path("data/alpaca"),
checkpoint_dir: Path = Path("checkpoints/stabilityai/stablelm-base-alpha-3b"),
out_dir: Path = Path("out/adapter/alpaca"),
precision: Optional[str] = None,
tpu: bool = False,
):
if precision is None:
precision = "32-true" if tpu else "bf16-mixed"
fabric_devices = devices
if fabric_devices > 1:
if tpu:
# For multi-host TPU training, the device count for Fabric is limited to the count on a single host.
fabric_devices = "auto"
strategy = XLAStrategy(sync_module_states=False)
else:
strategy = FSDPStrategy(
auto_wrap_policy={Block},
activation_checkpointing_policy={Block},
state_dict_type="full",
limit_all_gathers=True,
cpu_offload=False,
)
else:
strategy = "auto"
logger = step_csv_logger(out_dir.parent, out_dir.name, flush_logs_every_n_steps=log_interval)
fabric = L.Fabric(devices=fabric_devices, strategy=strategy, precision=precision, loggers=logger)
fabric.print(hparams)
fabric.launch(main, data_dir, checkpoint_dir, out_dir)
def main(fabric: L.Fabric, data_dir: Path, checkpoint_dir: Path, out_dir: Path):
check_valid_checkpoint_dir(checkpoint_dir)
speed_monitor = SpeedMonitor(fabric, window_size=50, time_unit="seconds")
fabric.seed_everything(1337) # same seed for every process to init model (FSDP)
if fabric.global_rank == 0:
os.makedirs(out_dir, exist_ok=True)
train_data = torch.load(data_dir / "train.pt")
val_data = torch.load(data_dir / "test.pt")
config = Config.from_name(name=checkpoint_dir.name)
checkpoint_path = checkpoint_dir / "lit_model.pth"
fabric.print(f"Loading model {str(checkpoint_path)!r} with {config.__dict__}")
with fabric.init_module(empty_init=False):
model = GPT(config)
model.apply(model._init_weights) # for the adapter weights
with lazy_load(checkpoint_path) as checkpoint:
# strict=False because missing keys due to adapter weights not contained in state dict
model.load_state_dict(checkpoint, strict=False)
mark_only_adapter_as_trainable(model)
fabric.print(f"Number of trainable parameters: {num_parameters(model, requires_grad=True):,}")
fabric.print(f"Number of non trainable parameters: {num_parameters(model, requires_grad=False):,}")
trainable_params = [p for p in model.parameters() if p.requires_grad]
optimizer = torch.optim.AdamW(trainable_params, lr=learning_rate, weight_decay=weight_decay)
model, optimizer = fabric.setup(model, optimizer)
fabric.seed_everything(1337 + fabric.global_rank)
train_time = time.time()
train(fabric, model, optimizer, train_data, val_data, checkpoint_dir, out_dir, speed_monitor)
fabric.print(f"Training time: {(time.time()-train_time):.2f}s")
# Save the final checkpoint at the end of training
save_path = out_dir / "lit_model_adapter_finetuned.pth"
save_adapter_checkpoint(fabric, model, save_path)
def train(
fabric: L.Fabric,
model: GPT,
optimizer: torch.optim.Optimizer,
train_data: List[Dict],
val_data: List[Dict],
checkpoint_dir: Path,
out_dir: Path,
speed_monitor: SpeedMonitor,
) -> None:
tokenizer = Tokenizer(checkpoint_dir)
max_seq_length, longest_seq_length, longest_seq_ix = get_max_seq_length(train_data)
validate(fabric, model, val_data, tokenizer, longest_seq_length) # sanity check
with torch.device("meta"):
meta_model = GPT(model.config)
# estimated is too much of an optimistic estimate, left just for reference
estimated_flops = estimate_flops(meta_model) * micro_batch_size
fabric.print(f"Estimated TFLOPs: {estimated_flops * fabric.world_size / 1e12:.2f}")
x = torch.randint(0, 1, (micro_batch_size, model.config.block_size))
measured_flops = measure_flops(meta_model, x)
fabric.print(f"Measured TFLOPs: {measured_flops * fabric.world_size / 1e12:.2f}")
del meta_model, x
step_count = 0
total_lengths = 0
total_t0 = time.time()
if fabric.device.type == "xla":
import torch_xla.core.xla_model as xm
xm.mark_step()
for iter_num in range(max_iters):
if step_count <= warmup_steps:
# linear warmup
lr = learning_rate * step_count / warmup_steps
for param_group in optimizer.param_groups:
param_group["lr"] = lr
iter_t0 = time.time()
input_ids, targets = get_batch(
fabric, train_data, longest_seq_length, longest_seq_ix if iter_num == 0 else None
)
is_accumulating = (iter_num + 1) % gradient_accumulation_iters != 0
with fabric.no_backward_sync(model, enabled=is_accumulating):
logits = model(input_ids, max_seq_length=max_seq_length, lm_head_chunk_size=128)
# shift the targets such that output n predicts token n+1
logits[-1] = logits[-1][..., :-1, :]
loss = chunked_cross_entropy(logits, targets[..., 1:])
fabric.backward(loss / gradient_accumulation_iters)
if not is_accumulating:
optimizer.step()
optimizer.zero_grad()
step_count += 1
elif fabric.device.type == "xla":
xm.mark_step()
t1 = time.time()
total_lengths += input_ids.size(1)
speed_monitor.on_train_batch_end(
(iter_num + 1) * micro_batch_size,
t1 - total_t0,
# this assumes that device FLOPs are the same and that all devices have the same batch size
fabric.world_size,
flops_per_batch=measured_flops,
lengths=total_lengths,
)
if iter_num % log_interval == 0:
fabric.print(
f"iter {iter_num} step {step_count}: loss {loss.item():.4f}, iter time:"
f" {(t1 - iter_t0) * 1000:.2f}ms{' (optimizer.step)' if not is_accumulating else ''}"
)
if not is_accumulating and step_count % eval_interval == 0:
t0 = time.time()
val_loss = validate(fabric, model, val_data, tokenizer, longest_seq_length)
t1 = time.time() - t0
speed_monitor.eval_end(t1)
fabric.print(f"step {iter_num}: val loss {val_loss:.4f}, val time: {t1 * 1000:.2f}ms")
fabric.barrier()
if not is_accumulating and step_count % save_interval == 0:
checkpoint_path = out_dir / f"iter-{iter_num:06d}-ckpt.pth"
save_adapter_checkpoint(fabric, model, checkpoint_path)
@torch.no_grad()
def validate(
fabric: L.Fabric, model: GPT, val_data: List[Dict], tokenizer: Tokenizer, longest_seq_length: int
) -> torch.Tensor:
fabric.print("Validating ...")
model.eval()
losses = torch.zeros(eval_iters)
for k in range(eval_iters):
input_ids, targets = get_batch(fabric, val_data, longest_seq_length)
logits = model(input_ids)
loss = chunked_cross_entropy(logits, targets, chunk_size=0)
losses[k] = loss.item()
val_loss = losses.mean()
# produce an example:
instruction = "Recommend a movie for me to watch during the weekend and explain the reason."
fabric.print(instruction)
sample = {"instruction": instruction, "input": ""}
prompt = generate_prompt(sample)
encoded = tokenizer.encode(prompt, device=fabric.device)
max_returned_tokens = len(encoded) + 100
output = generate(
model, idx=encoded, max_returned_tokens=max_returned_tokens, max_seq_length=max_returned_tokens, temperature=0.8
)
output = tokenizer.decode(output)
fabric.print(output)
model.reset_cache()
model.train()
return val_loss.item()
def get_batch(
fabric: L.Fabric, data: List[Dict], longest_seq_length: int, longest_seq_ix: Optional[int] = None
) -> Tuple[torch.Tensor, torch.Tensor]:
ix = torch.randint(len(data), (micro_batch_size,))
if longest_seq_ix is not None:
# force the longest sample at the beginning so potential OOMs happen right away
ix[0] = longest_seq_ix
input_ids = [data[i]["input_ids"].type(torch.int64) for i in ix]
labels = [data[i]["labels"].type(torch.int64) for i in ix]
# it's better to pad to a fixed seq length with XLA to avoid recompilation
max_len = max(len(s) for s in input_ids) if fabric.device.type != "xla" else longest_seq_length
def pad_right(x, pad_id):
# pad right based on the longest sequence
n = max_len - len(x)
return torch.cat((x, torch.full((n,), pad_id, dtype=x.dtype)))
x = torch.stack([pad_right(x, pad_id=0) for x in input_ids])
y = torch.stack([pad_right(x, pad_id=-1) for x in labels])
if fabric.device.type == "cuda" and x.device.type == "cpu":
x, y = fabric.to_device((x.pin_memory(), y.pin_memory()))
else:
x, y = fabric.to_device((x, y))
return x, y
def get_max_seq_length(data: List[Dict]) -> Tuple[int, int, int]:
# find out the minimum max_seq_length required during fine-tuning (saves memory!)
lengths = [len(d["input_ids"]) for d in data]
max_seq_length = max(lengths)
longest_seq_ix = lengths.index(max_seq_length)
# support easy override at the top of the file
return (
override_max_seq_length if isinstance(override_max_seq_length, int) else max_seq_length,
max_seq_length,
longest_seq_ix,
)
def save_adapter_checkpoint(fabric, model, file_path: Path):
fabric.print(f"Saving adapter weights to {str(file_path)!r}")
fabric.save(file_path, {"model": model}, filter={"model": adapter_filter})
if __name__ == "__main__":
# Uncomment this line if you see an error: "Expected is_sm80 to be true, but got false"
# torch.backends.cuda.enable_flash_sdp(False)
torch.set_float32_matmul_precision("high")
from jsonargparse import CLI
CLI(setup)