Skip to content

Latest commit

 

History

History
114 lines (81 loc) · 3.86 KB

algorithm_rec_robustscanner_en.md

File metadata and controls

114 lines (81 loc) · 3.86 KB

RobustScanner

1. Introduction

Paper:

RobustScanner: Dynamically Enhancing Positional Clues for Robust Text Recognition Xiaoyu Yue, Zhanghui Kuang, Chenhao Lin, Hongbin Sun, Wayne Zhang ECCV, 2020

Using MJSynth and SynthText two text recognition datasets for training, and evaluating on IIIT, SVT, IC13, IC15, SVTP, CUTE datasets, the algorithm reproduction effect is as follows:

Model Backbone config Acc Download link
RobustScanner ResNet31 rec_r31_robustscanner.yml 87.77% coming soon

Note:In addition to using the two text recognition datasets MJSynth and SynthText, SynthAdd data (extraction code: 627x), and some real data are used in training, the specific data details can refer to the paper.

2. Environment

Please refer to "Environment Preparation" to configure the PaddleOCR environment, and refer to "Project Clone" to clone the project code.

3. Model Training / Evaluation / Prediction

Please refer to Text Recognition Tutorial. PaddleOCR modularizes the code, and training different recognition models only requires changing the configuration file.

Training:

Specifically, after the data preparation is completed, the training can be started. The training command is as follows:

#Single GPU training (long training period, not recommended)
python3 tools/train.py -c configs/rec/rec_r31_robustscanner.yml

#Multi GPU training, specify the gpu number through the --gpus parameter
python3 -m paddle.distributed.launch --gpus '0,1,2,3'  tools/train.py -c configs/rec/rec_r31_robustscanner.yml

Evaluation:

# GPU evaluation
python3 -m paddle.distributed.launch --gpus '0' tools/eval.py -c configs/rec/rec_r31_robustscanner.yml -o Global.pretrained_model={path/to/weights}/best_accuracy

Prediction:

# The configuration file used for prediction must match the training
python3 tools/infer_rec.py -c configs/rec/rec_r31_robustscanner.yml -o Global.pretrained_model={path/to/weights}/best_accuracy Global.infer_img=doc/imgs_words/en/word_1.png

4. Inference and Deployment

4.1 Python Inference

First, the model saved during the RobustScanner text recognition training process is converted into an inference model. you can use the following command to convert:

python3 tools/export_model.py -c configs/rec/rec_r31_robustscanner.yml -o Global.pretrained_model={path/to/weights}/best_accuracy  Global.save_inference_dir=./inference/rec_r31_robustscanner

For RobustScanner text recognition model inference, the following commands can be executed:

python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words/en/word_1.png" --rec_model_dir="./inference/rec_r31_robustscanner/" --rec_image_shape="3, 48, 48, 160" --rec_algorithm="RobustScanner" --rec_char_dict_path="ppocr/utils/dict90.txt" --use_space_char=False

4.2 C++ Inference

Not supported

4.3 Serving

Not supported

4.4 More

Not supported

5. FAQ

Citation

@article{2020RobustScanner,
  title={RobustScanner: Dynamically Enhancing Positional Clues for Robust Text Recognition},
  author={Xiaoyu Yue and Zhanghui Kuang and Chenhao Lin and Hongbin Sun and Wayne Zhang},
  journal={ECCV2020},
  year={2020},
}