forked from keras-team/keras
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathimdb_bidirectional_lstm.py
62 lines (51 loc) · 2.27 KB
/
imdb_bidirectional_lstm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
'''Train a Bidirectional LSTM on the IMDB sentiment classification task.
GPU command:
THEANO_FLAGS=mode=FAST_RUN,device=gpu,floatX=float32 python imdb_bidirectional_lstm.py
Output after 4 epochs on CPU: ~0.8146
Time per epoch on CPU (Core i7): ~150s.
'''
from __future__ import print_function
import numpy as np
np.random.seed(1337) # for reproducibility
from keras.preprocessing import sequence
from keras.utils.np_utils import accuracy
from keras.models import Graph
from keras.layers.core import Dense, Dropout
from keras.layers.embeddings import Embedding
from keras.layers.recurrent import LSTM
from keras.datasets import imdb
max_features = 20000
maxlen = 100 # cut texts after this number of words (among top max_features most common words)
batch_size = 32
print('Loading data...')
(X_train, y_train), (X_test, y_test) = imdb.load_data(nb_words=max_features,
test_split=0.2)
print(len(X_train), 'train sequences')
print(len(X_test), 'test sequences')
print("Pad sequences (samples x time)")
X_train = sequence.pad_sequences(X_train, maxlen=maxlen)
X_test = sequence.pad_sequences(X_test, maxlen=maxlen)
print('X_train shape:', X_train.shape)
print('X_test shape:', X_test.shape)
y_train = np.array(y_train)
y_test = np.array(y_test)
print('Build model...')
model = Graph()
model.add_input(name='input', input_shape=(maxlen,), dtype=int)
model.add_node(Embedding(max_features, 128, input_length=maxlen),
name='embedding', input='input')
model.add_node(LSTM(64), name='forward', input='embedding')
model.add_node(LSTM(64, go_backwards=True), name='backward', input='embedding')
model.add_node(Dropout(0.5), name='dropout', inputs=['forward', 'backward'])
model.add_node(Dense(1, activation='sigmoid'), name='sigmoid', input='dropout')
model.add_output(name='output', input='sigmoid')
# try using different optimizers and different optimizer configs
model.compile('adam', {'output': 'binary_crossentropy'})
print('Train...')
model.fit({'input': X_train, 'output': y_train},
batch_size=batch_size,
nb_epoch=4)
acc = accuracy(y_test,
np.round(np.array(model.predict({'input': X_test},
batch_size=batch_size)['output'])))
print('Test accuracy:', acc)