-
Notifications
You must be signed in to change notification settings - Fork 0
/
test_graph.py
391 lines (338 loc) · 13.6 KB
/
test_graph.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
import math
import numpy as np
import scipy.sparse as sp
import networkx as nx
import dgl
import backend as F
from dgl import DGLError
# graph generation: a random graph with 10 nodes
# and 20 edges.
# - has self loop
# - no multi edge
def edge_pair_input(sort=False):
if sort:
src = [0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 4, 4, 5, 5, 6, 7, 7, 7, 9]
dst = [4, 6, 9, 3, 5, 3, 7, 5, 8, 1, 3, 4, 9, 1, 9, 6, 2, 8, 9, 2]
return src, dst
else:
src = [0, 0, 4, 5, 0, 4, 7, 4, 4, 3, 2, 7, 7, 5, 3, 2, 1, 9, 6, 1]
dst = [9, 6, 3, 9, 4, 4, 9, 9, 1, 8, 3, 2, 8, 1, 5, 7, 3, 2, 6, 5]
return src, dst
def nx_input():
g = nx.DiGraph()
src, dst = edge_pair_input()
for i, e in enumerate(zip(src, dst)):
g.add_edge(*e, id=i)
return g
def elist_input():
src, dst = edge_pair_input()
return list(zip(src, dst))
def scipy_coo_input():
src, dst = edge_pair_input()
return sp.coo_matrix((np.ones((20,)), (src, dst)), shape=(10,10))
def scipy_csr_input():
src, dst = edge_pair_input()
csr = sp.coo_matrix((np.ones((20,)), (src, dst)), shape=(10,10)).tocsr()
csr.sort_indices()
# src = [0 0 0 1 1 2 2 3 3 4 4 4 4 5 5 6 7 7 7 9]
# dst = [4 6 9 3 5 3 7 5 8 1 3 4 9 1 9 6 2 8 9 2]
return csr
def gen_by_mutation():
g = dgl.DGLGraph()
src, dst = edge_pair_input()
g.add_nodes(10)
g.add_edges(src, dst)
return g
def gen_from_data(data, readonly, sort):
return dgl.DGLGraph(data, readonly=readonly, sort_csr=True)
def test_query():
def _test_one(g):
assert g.number_of_nodes() == 10
assert g.number_of_edges() == 20
assert len(g) == 10
assert not g.is_multigraph
for i in range(10):
assert g.has_node(i)
assert i in g
assert not g.has_node(11)
assert not 11 in g
assert F.allclose(g.has_nodes([0,2,10,11]), F.tensor([1,1,0,0]))
src, dst = edge_pair_input()
for u, v in zip(src, dst):
assert g.has_edge_between(u, v)
assert not g.has_edge_between(0, 0)
assert F.allclose(g.has_edges_between([0, 0, 3], [0, 9, 8]), F.tensor([0,1,1]))
assert set(F.asnumpy(g.predecessors(9))) == set([0,5,7,4])
assert set(F.asnumpy(g.successors(2))) == set([7,3])
assert g.edge_id(4,4) == 5
assert F.allclose(g.edge_ids([4,0], [4,9]), F.tensor([5,0]))
src, dst = g.find_edges([3, 6, 5])
assert F.allclose(src, F.tensor([5, 7, 4]))
assert F.allclose(dst, F.tensor([9, 9, 4]))
src, dst, eid = g.in_edges(9, form='all')
tup = list(zip(F.asnumpy(src), F.asnumpy(dst), F.asnumpy(eid)))
assert set(tup) == set([(0,9,0),(5,9,3),(7,9,6),(4,9,7)])
src, dst, eid = g.in_edges([9,0,8], form='all') # test node#0 has no in edges
tup = list(zip(F.asnumpy(src), F.asnumpy(dst), F.asnumpy(eid)))
assert set(tup) == set([(0,9,0),(5,9,3),(7,9,6),(4,9,7),(3,8,9),(7,8,12)])
src, dst, eid = g.out_edges(0, form='all')
tup = list(zip(F.asnumpy(src), F.asnumpy(dst), F.asnumpy(eid)))
assert set(tup) == set([(0,9,0),(0,6,1),(0,4,4)])
src, dst, eid = g.out_edges([0,4,8], form='all') # test node#8 has no out edges
tup = list(zip(F.asnumpy(src), F.asnumpy(dst), F.asnumpy(eid)))
assert set(tup) == set([(0,9,0),(0,6,1),(0,4,4),(4,3,2),(4,4,5),(4,9,7),(4,1,8)])
src, dst, eid = g.edges('all', 'eid')
t_src, t_dst = edge_pair_input()
t_tup = list(zip(t_src, t_dst, list(range(20))))
tup = list(zip(F.asnumpy(src), F.asnumpy(dst), F.asnumpy(eid)))
assert set(tup) == set(t_tup)
assert list(F.asnumpy(eid)) == list(range(20))
src, dst, eid = g.edges('all', 'srcdst')
t_src, t_dst = edge_pair_input()
t_tup = list(zip(t_src, t_dst, list(range(20))))
tup = list(zip(F.asnumpy(src), F.asnumpy(dst), F.asnumpy(eid)))
assert set(tup) == set(t_tup)
assert list(F.asnumpy(src)) == sorted(list(F.asnumpy(src)))
assert g.in_degree(0) == 0
assert g.in_degree(9) == 4
assert F.allclose(g.in_degrees([0, 9]), F.tensor([0, 4]))
assert g.out_degree(8) == 0
assert g.out_degree(9) == 1
assert F.allclose(g.out_degrees([8, 9]), F.tensor([0, 1]))
assert np.array_equal(
F.sparse_to_numpy(g.adjacency_matrix(transpose=False)), scipy_coo_input().toarray().T)
assert np.array_equal(
F.sparse_to_numpy(g.adjacency_matrix(transpose=True)), scipy_coo_input().toarray())
def _test(g):
# test twice to see whether the cached format works or not
_test_one(g)
_test_one(g)
def _test_csr_one(g):
assert g.number_of_nodes() == 10
assert g.number_of_edges() == 20
assert len(g) == 10
assert not g.is_multigraph
for i in range(10):
assert g.has_node(i)
assert i in g
assert not g.has_node(11)
assert not 11 in g
assert F.allclose(g.has_nodes([0,2,10,11]), F.tensor([1,1,0,0]))
src, dst = edge_pair_input(sort=True)
for u, v in zip(src, dst):
assert g.has_edge_between(u, v)
assert not g.has_edge_between(0, 0)
assert F.allclose(g.has_edges_between([0, 0, 3], [0, 9, 8]), F.tensor([0,1,1]))
assert set(F.asnumpy(g.predecessors(9))) == set([0,5,7,4])
assert set(F.asnumpy(g.successors(2))) == set([7,3])
# src = [0 0 0 1 1 2 2 3 3 4 4 4 4 5 5 6 7 7 7 9]
# dst = [4 6 9 3 5 3 7 5 8 1 3 4 9 1 9 6 2 8 9 2]
# eid = [0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9]
assert g.edge_id(4,4) == 11
assert F.allclose(g.edge_ids([4,0], [4,9]), F.tensor([11,2]))
src, dst = g.find_edges([3, 6, 5])
assert F.allclose(src, F.tensor([1, 2, 2]))
assert F.allclose(dst, F.tensor([3, 7, 3]))
src, dst, eid = g.in_edges(9, form='all')
tup = list(zip(F.asnumpy(src), F.asnumpy(dst), F.asnumpy(eid)))
assert set(tup) == set([(0,9,2),(5,9,14),(7,9,18),(4,9,12)])
src, dst, eid = g.in_edges([9,0,8], form='all') # test node#0 has no in edges
tup = list(zip(F.asnumpy(src), F.asnumpy(dst), F.asnumpy(eid)))
assert set(tup) == set([(0,9,2),(5,9,14),(7,9,18),(4,9,12),(3,8,8),(7,8,17)])
src, dst, eid = g.out_edges(0, form='all')
tup = list(zip(F.asnumpy(src), F.asnumpy(dst), F.asnumpy(eid)))
assert set(tup) == set([(0,9,2),(0,6,1),(0,4,0)])
src, dst, eid = g.out_edges([0,4,8], form='all') # test node#8 has no out edges
tup = list(zip(F.asnumpy(src), F.asnumpy(dst), F.asnumpy(eid)))
assert set(tup) == set([(0,9,2),(0,6,1),(0,4,0),(4,3,10),(4,4,11),(4,9,12),(4,1,9)])
src, dst, eid = g.edges('all', 'eid')
t_src, t_dst = edge_pair_input(sort=True)
t_tup = list(zip(t_src, t_dst, list(range(20))))
tup = list(zip(F.asnumpy(src), F.asnumpy(dst), F.asnumpy(eid)))
assert set(tup) == set(t_tup)
assert list(F.asnumpy(eid)) == list(range(20))
src, dst, eid = g.edges('all', 'srcdst')
t_src, t_dst = edge_pair_input(sort=True)
t_tup = list(zip(t_src, t_dst, list(range(20))))
tup = list(zip(F.asnumpy(src), F.asnumpy(dst), F.asnumpy(eid)))
assert set(tup) == set(t_tup)
assert list(F.asnumpy(src)) == sorted(list(F.asnumpy(src)))
assert g.in_degree(0) == 0
assert g.in_degree(9) == 4
assert F.allclose(g.in_degrees([0, 9]), F.tensor([0, 4]))
assert g.out_degree(8) == 0
assert g.out_degree(9) == 1
assert F.allclose(g.out_degrees([8, 9]), F.tensor([0, 1]))
assert np.array_equal(
F.sparse_to_numpy(g.adjacency_matrix(transpose=False)), scipy_coo_input().toarray().T)
assert np.array_equal(
F.sparse_to_numpy(g.adjacency_matrix(transpose=True)), scipy_coo_input().toarray())
def _test_csr(g):
# test twice to see whether the cached format works or not
_test_csr_one(g)
_test_csr_one(g)
_test(gen_by_mutation())
_test(gen_from_data(elist_input(), False, False))
_test(gen_from_data(elist_input(), True, False))
_test(gen_from_data(elist_input(), True, True))
_test(gen_from_data(nx_input(), False, False))
_test(gen_from_data(nx_input(), True, False))
_test(gen_from_data(scipy_coo_input(), False, False))
_test(gen_from_data(scipy_coo_input(), True, False))
_test_csr(gen_from_data(scipy_csr_input(), False, False))
_test_csr(gen_from_data(scipy_csr_input(), True, False))
def test_mutation():
g = dgl.DGLGraph()
# test add nodes with data
g.add_nodes(5)
g.add_nodes(5, {'h' : F.ones((5, 2))})
ans = F.cat([F.zeros((5, 2)), F.ones((5, 2))], 0)
assert F.allclose(ans, g.ndata['h'])
g.ndata['w'] = 2 * F.ones((10, 2))
assert F.allclose(2 * F.ones((10, 2)), g.ndata['w'])
# test add edges with data
g.add_edges([2, 3], [3, 4])
g.add_edges([0, 1], [1, 2], {'m' : F.ones((2, 2))})
ans = F.cat([F.zeros((2, 2)), F.ones((2, 2))], 0)
assert F.allclose(ans, g.edata['m'])
# test clear and add again
g.clear()
g.add_nodes(5)
g.ndata['h'] = 3 * F.ones((5, 2))
assert F.allclose(3 * F.ones((5, 2)), g.ndata['h'])
g.init_ndata('h1', (g.number_of_nodes(), 3), 'float32')
assert F.allclose(F.zeros((g.number_of_nodes(), 3)), g.ndata['h1'])
g.init_edata('h2', (g.number_of_edges(), 3), 'float32')
assert F.allclose(F.zeros((g.number_of_edges(), 3)), g.edata['h2'])
def test_scipy_adjmat():
g = dgl.DGLGraph()
g.add_nodes(10)
g.add_edges(range(9), range(1, 10))
adj_0 = g.adjacency_matrix_scipy()
adj_1 = g.adjacency_matrix_scipy(fmt='coo')
assert np.array_equal(adj_0.toarray(), adj_1.toarray())
adj_t0 = g.adjacency_matrix_scipy(transpose=True)
adj_t_1 = g.adjacency_matrix_scipy(transpose=True, fmt='coo')
assert np.array_equal(adj_0.toarray(), adj_1.toarray())
g.readonly()
adj_2 = g.adjacency_matrix_scipy()
adj_3 = g.adjacency_matrix_scipy(fmt='coo')
assert np.array_equal(adj_2.toarray(), adj_3.toarray())
assert np.array_equal(adj_0.toarray(), adj_2.toarray())
adj_t2 = g.adjacency_matrix_scipy(transpose=True)
adj_t3 = g.adjacency_matrix_scipy(transpose=True, fmt='coo')
assert np.array_equal(adj_t2.toarray(), adj_t3.toarray())
assert np.array_equal(adj_t0.toarray(), adj_t2.toarray())
def test_incmat():
g = dgl.DGLGraph()
g.add_nodes(4)
g.add_edge(0, 1) # 0
g.add_edge(0, 2) # 1
g.add_edge(0, 3) # 2
g.add_edge(2, 3) # 3
g.add_edge(1, 1) # 4
inc_in = F.sparse_to_numpy(g.incidence_matrix('in'))
inc_out = F.sparse_to_numpy(g.incidence_matrix('out'))
inc_both = F.sparse_to_numpy(g.incidence_matrix('both'))
print(inc_in)
print(inc_out)
print(inc_both)
assert np.allclose(
inc_in,
np.array([[0., 0., 0., 0., 0.],
[1., 0., 0., 0., 1.],
[0., 1., 0., 0., 0.],
[0., 0., 1., 1., 0.]]))
assert np.allclose(
inc_out,
np.array([[1., 1., 1., 0., 0.],
[0., 0., 0., 0., 1.],
[0., 0., 0., 1., 0.],
[0., 0., 0., 0., 0.]]))
assert np.allclose(
inc_both,
np.array([[-1., -1., -1., 0., 0.],
[1., 0., 0., 0., 0.],
[0., 1., 0., -1., 0.],
[0., 0., 1., 1., 0.]]))
def test_readonly():
g = dgl.DGLGraph()
g.add_nodes(5)
g.add_edges([0, 1, 2, 3], [1, 2, 3, 4])
g.ndata['x'] = F.zeros((5, 3))
g.edata['x'] = F.zeros((4, 4))
g.readonly(False)
assert g._graph.is_readonly() == False
assert g.number_of_nodes() == 5
assert g.number_of_edges() == 4
g.readonly()
assert g._graph.is_readonly() == True
assert g.number_of_nodes() == 5
assert g.number_of_edges() == 4
try:
g.add_nodes(5)
fail = False
except DGLError:
fail = True
finally:
assert fail
g.readonly()
assert g._graph.is_readonly() == True
assert g.number_of_nodes() == 5
assert g.number_of_edges() == 4
try:
g.add_nodes(5)
fail = False
except DGLError:
fail = True
finally:
assert fail
g.readonly(False)
assert g._graph.is_readonly() == False
assert g.number_of_nodes() == 5
assert g.number_of_edges() == 4
try:
g.add_nodes(10)
g.add_edges([4, 5, 6, 7, 8, 9, 10, 11, 12, 13],
[5, 6, 7, 8, 9, 10, 11, 12, 13, 14])
fail = False
except DGLError:
fail = True
finally:
assert not fail
assert g.number_of_nodes() == 15
assert F.shape(g.ndata['x']) == (15, 3)
assert g.number_of_edges() == 14
assert F.shape(g.edata['x']) == (14, 4)
def test_find_edges():
g = dgl.DGLGraph()
g.add_nodes(10)
g.add_edges(range(9), range(1, 10))
e = g.find_edges([1, 3, 2, 4])
assert e[0][0] == 1 and e[0][1] == 3 and e[0][2] == 2 and e[0][3] == 4
assert e[1][0] == 2 and e[1][1] == 4 and e[1][2] == 3 and e[1][3] == 5
try:
g.find_edges([10])
fail = False
except DGLError:
fail = True
finally:
assert fail
g.readonly()
e = g.find_edges([1, 3, 2, 4])
assert e[0][0] == 1 and e[0][1] == 3 and e[0][2] == 2 and e[0][3] == 4
assert e[1][0] == 2 and e[1][1] == 4 and e[1][2] == 3 and e[1][3] == 5
try:
g.find_edges([10])
fail = False
except DGLError:
fail = True
finally:
assert fail
if __name__ == '__main__':
test_query()
test_mutation()
test_scipy_adjmat()
test_incmat()
test_readonly()
test_find_edges()