forked from google-research/google-research
-
Notifications
You must be signed in to change notification settings - Fork 0
/
run_integration_test_nonlinear.sh
executable file
·83 lines (80 loc) · 2.62 KB
/
run_integration_test_nonlinear.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
# Copyright 2020 The Google Research Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#!/bin/bash
# TODO(ereal): fix mutate_*_size_* values. Affects random number generation.
# Nonlinear example with Neural Network as init model:
bazel run -c opt \
--copt=-DMAX_SCALAR_ADDRESSES=5 \
--copt=-DMAX_VECTOR_ADDRESSES=9 \
--copt=-DMAX_MATRIX_ADDRESSES=2 \
:run_search_experiment -- \
--search_experiment_spec=" \
search_tasks { \
tasks { \
scalar_2layer_nn_regression_task {} \
features_size: 4 \
num_train_examples: 1000 \
num_valid_examples: 100 \
num_tasks: 1 \
eval_type: RMS_ERROR \
} \
} \
setup_ops: [VECTOR_GAUSSIAN_SET_OP, MATRIX_GAUSSIAN_SET_OP] \
predict_ops: [] \
learn_ops: [] \
setup_size_init: 2 \
predict_size_init: 1 \
learn_size_init: 4 \
train_budget {train_budget_baseline: NEURAL_NET_ALGORITHM} \
fitness_combination_mode: MEAN_FITNESS_COMBINATION \
population_size: 1000 \
tournament_size: 10 \
initial_population: INTEGRATION_TEST_DAMAGED_NEURAL_NET_ALGORITHM \
max_train_steps: 100000000 \
allowed_mutation_types {
mutation_types: [ALTER_PARAM_MUTATION_TYPE, INSERT_INSTRUCTION_MUTATION_TYPE, REMOVE_INSTRUCTION_MUTATION_TYPE, TRADE_INSTRUCTION_MUTATION_TYPE] \
} \
mutate_prob: 1.0 \
mutate_setup_size_min: 6 \
mutate_setup_size_max: 7 \
mutate_predict_size_min: 3 \
mutate_predict_size_max: 4 \
mutate_learn_size_min: 9 \
mutate_learn_size_max: 10 \
progress_every: 10000 \
" \
--final_tasks=" \
tasks { \
scalar_2layer_nn_regression_task {} \
features_size: 4 \
num_train_examples: 1000 \
num_valid_examples: 100 \
num_tasks: 1 \
eval_type: RMS_ERROR \
param_seeds: [9000] \
data_seeds: [19000] \
} \
" \
--random_seed=100001 \
--select_tasks=" \
tasks { \
scalar_2layer_nn_regression_task {} \
features_size: 4 \
num_train_examples: 1000 \
num_valid_examples: 100 \
num_tasks: 1 eval_type: \
RMS_ERROR param_seeds: [9000] \
data_seeds: [19000] \
} \
"