-
Notifications
You must be signed in to change notification settings - Fork 3
/
decode_raw_fmllr.sh
executable file
·234 lines (199 loc) · 10.5 KB
/
decode_raw_fmllr.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
#!/usr/bin/env bash
# Copyright 2012-2013 Johns Hopkins University (Author: Daniel Povey)
# This decoding script is like decode_fmllr.sh, but it does the fMLLR on
# the raw cepstra, using the model in the LDA+MLLT space
#
# Decoding script that does fMLLR. This can be on top of delta+delta-delta, or
# LDA+MLLT features.
# There are 3 models involved potentially in this script,
# and for a standard, speaker-independent system they will all be the same.
# The "alignment model" is for the 1st-pass decoding and to get the
# Gaussian-level alignments for the "adaptation model" the first time we
# do fMLLR. The "adaptation model" is used to estimate fMLLR transforms
# and to generate state-level lattices. The lattices are then rescored
# with the "final model".
#
# The following table explains where we get these 3 models from.
# Note: $srcdir is one level up from the decoding directory.
#
# Model Default source:
#
# "alignment model" $srcdir/final.alimdl --alignment-model <model>
# (or $srcdir/final.mdl if alimdl absent)
# "adaptation model" $srcdir/final.mdl --adapt-model <model>
# "final model" $srcdir/final.mdl --final-model <model>
# Begin configuration section
first_beam=10.0 # Beam used in initial, speaker-indep. pass
first_max_active=2000 # max-active used in initial pass.
alignment_model=
adapt_model=
final_model=
stage=0
acwt=0.083333 # Acoustic weight used in getting fMLLR transforms, and also in
# lattice generation.
max_active=7000
use_normal_fmllr=false
beam=13.0
lattice_beam=6.0
nj=4
silence_weight=0.01
cmd=run.pl
si_dir=
num_threads=1 # if >1, will use gmm-latgen-faster-parallel
parallel_opts= # ignored now.
skip_scoring=false
scoring_opts=
# End configuration section
echo "$0 $@" # Print the command line for logging
[ -f ./path.sh ] && . ./path.sh; # source the path.
. parse_options.sh || exit 1;
if [ $# != 3 ]; then
echo "Wrong #arguments ($#, expected 3)"
echo "Usage: steps/decode_fmllr.sh [options] <graph-dir> <data-dir> <decode-dir>"
echo " e.g.: steps/decode_fmllr.sh exp/tri2b/graph_tgpr data/test_dev93 exp/tri2b/decode_dev93_tgpr"
echo "main options (for others, see top of script file)"
echo " --config <config-file> # config containing options"
echo " --nj <nj> # number of parallel jobs"
echo " --cmd <cmd> # Command to run in parallel with"
echo " --adapt-model <adapt-mdl> # Model to compute transforms with"
echo " --alignment-model <ali-mdl> # Model to get Gaussian-level alignments for"
echo " # 1st pass of transform computation."
echo " --final-model <finald-mdl> # Model to finally decode with"
echo " --si-dir <speaker-indep-decoding-dir> # use this to skip 1st pass of decoding"
echo " # Caution-- must be with same tree"
echo " --acwt <acoustic-weight> # default 0.08333 ... used to get posteriors"
echo " --num-threads <n> # number of threads to use, default 1."
echo " --scoring-opts <opts> # options to local/score.sh"
exit 1;
fi
graphdir=$1
data=$2
dir=`echo $3 | sed 's:/$::g'` # remove any trailing slash.
srcdir=`dirname $dir`; # Assume model directory one level up from decoding directory.
sdata=$data/split$nj;
thread_string=
[ $num_threads -gt 1 ] && thread_string="-parallel --num-threads=$num_threads"
mkdir -p $dir/log
split_data.sh $data $nj || exit 1;
echo $nj > $dir/num_jobs
splice_opts=`cat $srcdir/splice_opts 2>/dev/null` # frame-splicing options.
cmvn_opts=`cat $srcdir/cmvn_opts 2>/dev/null`
raw_dim=$(feat-to-dim scp:$data/feats.scp -) || exit 1;
! [ "$raw_dim" -gt 0 ] && echo "raw feature dim not set" && exit 1;
silphonelist=`cat $graphdir/phones/silence.csl` || exit 1;
# Some checks. Note: we don't need $srcdir/tree but we expect
# it should exist, given the current structure of the scripts.
for f in $graphdir/HCLG.fst $data/feats.scp $srcdir/tree; do
[ ! -f $f ] && echo "$0: no such file $f" && exit 1;
done
## Work out name of alignment model. ##
if [ -z "$alignment_model" ]; then
if [ -f "$srcdir/final.alimdl" ]; then alignment_model=$srcdir/final.alimdl;
else alignment_model=$srcdir/final.mdl; fi
fi
[ ! -f "$alignment_model" ] && echo "$0: no alignment model $alignment_model " && exit 1;
##
## Do the speaker-independent decoding, if --si-dir option not present. ##
if [ -z "$si_dir" ]; then # we need to do the speaker-independent decoding pass.
si_dir=${dir}.si # Name it as our decoding dir, but with suffix ".si".
if [ $stage -le 0 ]; then
steps/decode.sh --scoring-opts "$scoring_opts" \
--num-threads $num_threads --skip-scoring $skip_scoring \
--acwt $acwt --nj $nj --cmd "$cmd" --beam $first_beam \
--model $alignment_model --max-active \
$first_max_active $graphdir $data $si_dir || exit 1;
fi
fi
##
## Some checks, and setting of defaults for variables.
[ "$nj" -ne "`cat $si_dir/num_jobs`" ] && echo "Mismatch in #jobs with si-dir" && exit 1;
[ ! -f "$si_dir/lat.1.gz" ] && echo "No such file $si_dir/lat.1.gz" && exit 1;
[ -z "$adapt_model" ] && adapt_model=$srcdir/final.mdl
[ -z "$final_model" ] && final_model=$srcdir/final.mdl
for f in $adapt_model $final_model; do
[ ! -f $f ] && echo "$0: no such file $f" && exit 1;
done
##
if [[ ! -f $srcdir/final.mat || ! -f $srcdir/full.mat ]]; then
echo "$0: we require final.mat and full.mat in the source directory $srcdir"
fi
splicedfeats="ark,s,cs:apply-cmvn $cmvn_opts --utt2spk=ark:$sdata/JOB/utt2spk scp:$sdata/JOB/cmvn.scp scp:$sdata/JOB/feats.scp ark:- | splice-feats $splice_opts ark:- ark:- |"
sifeats="$splicedfeats transform-feats $srcdir/final.mat ark:- ark:- |"
full_lda_mat="get-full-lda-mat --print-args=false $srcdir/final.mat $srcdir/full.mat -|"
##
## Now get the first-pass fMLLR transforms.
if [ $stage -le 1 ]; then
echo "$0: getting first-pass raw-fMLLR transforms."
$cmd JOB=1:$nj $dir/log/fmllr_pass1.JOB.log \
gunzip -c $si_dir/lat.JOB.gz \| \
lattice-to-post --acoustic-scale=$acwt ark:- ark:- \| \
weight-silence-post $silence_weight $silphonelist $alignment_model ark:- ark:- \| \
gmm-post-to-gpost $alignment_model "$sifeats" ark:- ark:- \| \
gmm-est-fmllr-raw-gpost --raw-feat-dim=$raw_dim --spk2utt=ark:$sdata/JOB/spk2utt $adapt_model "$full_lda_mat" \
"$splicedfeats" ark,s,cs:- ark:$dir/pre_trans.JOB || exit 1;
fi
##
pass1splicedfeats="ark,s,cs:apply-cmvn $cmvn_opts --utt2spk=ark:$sdata/JOB/utt2spk scp:$sdata/JOB/cmvn.scp scp:$sdata/JOB/feats.scp ark:- | transform-feats --utt2spk=ark:$sdata/JOB/utt2spk ark:$dir/pre_trans.JOB ark:- ark:- | splice-feats $splice_opts ark:- ark:- |"
pass1feats="$pass1splicedfeats transform-feats $srcdir/final.mat ark:- ark:- |"
## Do the main lattice generation pass. Note: we don't determinize the lattices at
## this stage, as we're going to use them in acoustic rescoring with the larger
## model, and it's more correct to store the full state-level lattice for this purpose.
if [ $stage -le 2 ]; then
echo "$0: doing main lattice generation phase"
$cmd --num-threads $num_threads JOB=1:$nj $dir/log/decode.JOB.log \
gmm-latgen-faster$thread_string --max-active=$max_active --beam=$beam --lattice-beam=$lattice_beam \
--acoustic-scale=$acwt --determinize-lattice=false \
--allow-partial=true --word-symbol-table=$graphdir/words.txt \
$adapt_model $graphdir/HCLG.fst "$pass1feats" "ark:|gzip -c > $dir/lat.tmp.JOB.gz" \
|| exit 1;
fi
##
## Do a second pass of estimating the transform-- this time with the lattices
## generated from the alignment model. Compose the transforms to get
## $dir/trans.1, etc.
if [ $stage -le 3 ]; then
echo "$0: estimating raw-fMLLR transforms a second time."
$cmd JOB=1:$nj $dir/log/fmllr_pass2.JOB.log \
lattice-determinize-pruned --acoustic-scale=$acwt --beam=4.0 \
"ark:gunzip -c $dir/lat.tmp.JOB.gz|" ark:- \| \
lattice-to-post --acoustic-scale=$acwt ark:- ark:- \| \
weight-silence-post $silence_weight $silphonelist $adapt_model ark:- ark:- \| \
gmm-est-fmllr-raw --raw-feat-dim=$raw_dim --spk2utt=ark:$sdata/JOB/spk2utt \
$adapt_model "$full_lda_mat" "$pass1splicedfeats" ark,s,cs:- ark:$dir/trans_tmp.JOB '&&' \
compose-transforms --b-is-affine=true ark:$dir/trans_tmp.JOB ark:$dir/pre_trans.JOB \
ark:$dir/raw_trans.JOB || exit 1;
fi
##
feats="ark,s,cs:apply-cmvn $cmvn_opts --utt2spk=ark:$sdata/JOB/utt2spk scp:$sdata/JOB/cmvn.scp scp:$sdata/JOB/feats.scp ark:- | transform-feats --utt2spk=ark:$sdata/JOB/utt2spk ark:$dir/raw_trans.JOB ark:- ark:- | splice-feats $splice_opts ark:- ark:- | transform-feats $srcdir/final.mat ark:- ark:- |"
if [ $stage -le 4 ] && $use_normal_fmllr; then
echo "$0: estimating normal fMLLR transforms"
$cmd JOB=1:$nj $dir/log/fmllr_pass3.JOB.log \
gmm-rescore-lattice $final_model "ark:gunzip -c $dir/lat.tmp.JOB.gz|" "$feats" ark:- \| \
lattice-determinize-pruned --acoustic-scale=$acwt --beam=4.0 ark:- ark:- \| \
lattice-to-post --acoustic-scale=$acwt ark:- ark:- \| \
weight-silence-post $silence_weight $silphonelist $adapt_model ark:- ark:- \| \
gmm-est-fmllr --spk2utt=ark:$sdata/JOB/spk2utt \
$adapt_model "$feats" ark,s,cs:- ark:$dir/trans.JOB || exit 1;
fi
if $use_normal_fmllr; then
feats="$feats transform-feats --utt2spk=ark:$sdata/JOB/utt2spk ark:$dir/trans.JOB ark:- ark:- |"
fi
# Rescore the state-level lattices with the final adapted features, and the final model
# (which by default is $srcdir/final.mdl, but which may be specified on the command line,
# useful in case of discriminatively trained systems).
# At this point we prune and determinize the lattices and write them out, ready for
# language model rescoring.
if [ $stage -le 5 ]; then
echo "$0: doing a final pass of acoustic rescoring."
$cmd --num-threads $num_threads JOB=1:$nj $dir/log/acoustic_rescore.JOB.log \
gmm-rescore-lattice $final_model "ark:gunzip -c $dir/lat.tmp.JOB.gz|" "$feats" ark:- \| \
lattice-determinize-pruned$thread_string --acoustic-scale=$acwt --beam=$lattice_beam ark:- \
"ark:|gzip -c > $dir/lat.JOB.gz" '&&' rm $dir/lat.tmp.JOB.gz || exit 1;
fi
if ! $skip_scoring ; then
[ ! -x local/score.sh ] && \
echo "$0: not scoring because local/score.sh does not exist or not executable." && exit 1;
local/score.sh $scoring_opts --cmd "$cmd" $data $graphdir $dir
fi
#rm $dir/{trans_tmp,pre_trans}.*
exit 0;