forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
common_quantization.py
497 lines (423 loc) · 17 KB
/
common_quantization.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
r"""Importing this file includes common utility methods and base clases for
checking quantization api and properties of resulting modules.
"""
import hypothesis
import io
import torch
import torch.nn as nn
import torch.nn.quantized as nnq
import torch.nn.quantized.dynamic as nnqd
from common_utils import TestCase
from torch.quantization import QuantWrapper, QuantStub, DeQuantStub, \
default_qconfig, QConfig, default_observer, default_weight_observer, \
default_qat_qconfig, propagate_qconfig, convert, DEFAULT_DYNAMIC_MODULE_MAPPING
# Disable deadline testing if this version of hypthesis supports it, otherwise
# just return the original function
def no_deadline(fn):
try:
return hypothesis.settings(deadline=None)(fn)
except hypothesis.errors.InvalidArgument:
return fn
def test_only_eval_fn(model, calib_data):
r"""
Default evaluation function takes a torch.utils.data.Dataset or a list of
input Tensors and run the model on the dataset
"""
total, correct = 0, 0
for data, target in calib_data:
output = model(data)
_, predicted = torch.max(output, 1)
total += target.size(0)
correct += (predicted == target).sum().item()
return correct / total
_default_loss_fn = torch.nn.CrossEntropyLoss()
def test_only_train_fn(model, train_data, loss_fn=_default_loss_fn):
r"""
Default train function takes a torch.utils.data.Dataset and train the model
on the dataset
"""
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
train_loss, correct, total = 0, 0, 0
for i in range(10):
model.train()
for data, target in train_data:
optimizer.zero_grad()
output = model(data)
loss = loss_fn(output, target)
loss.backward()
optimizer.step()
train_loss += loss.item()
_, predicted = torch.max(output, 1)
total += target.size(0)
correct += (predicted == target).sum().item()
return train_loss, correct, total
def convert_dynamic(module):
convert(module, DEFAULT_DYNAMIC_MODULE_MAPPING)
def prepare_dynamic(model, qconfig_dict=None):
propagate_qconfig(model, qconfig_dict)
return model
# QuantizationTestCase used as a base class for testing quantization on modules
class QuantizationTestCase(TestCase):
def setUp(self):
self.calib_data = [(torch.rand(2, 5, dtype=torch.float), torch.randint(0, 1, (2,), dtype=torch.long)) for _ in range(2)]
self.train_data = [(torch.rand(2, 5, dtype=torch.float), torch.randint(0, 1, (2,), dtype=torch.long)) for _ in range(2)]
self.img_data = [(torch.rand(2, 3, 10, 10, dtype=torch.float), torch.randint(0, 1, (2,), dtype=torch.long))
for _ in range(2)]
def checkNoPrepModules(self, module):
r"""Checks the module does not contain child
modules for quantization prepration, e.g.
quant, dequant and observer
"""
self.assertFalse(hasattr(module, 'quant'))
self.assertFalse(hasattr(module, 'dequant'))
def checkHasPrepModules(self, module):
r"""Checks the module contains child
modules for quantization prepration, e.g.
quant, dequant and observer
"""
self.assertTrue(hasattr(module, 'module'))
self.assertTrue(hasattr(module, 'quant'))
self.assertTrue(hasattr(module, 'dequant'))
def checkObservers(self, module):
r"""Checks the module or module's leaf descendants
have observers in preperation for quantization
"""
if hasattr(module, 'qconfig') and module.qconfig is not None and len(module._modules) == 0:
self.assertTrue(hasattr(module, 'observer'),
'module: ' + str(type(module)) + ' do not have observer')
for child in module.children():
self.checkObservers(child)
def checkQuantDequant(self, mod):
r"""Checks that mod has nn.Quantize and
nn.DeQuantize submodules inserted
"""
self.assertEqual(type(mod.quant), nnq.Quantize)
self.assertEqual(type(mod.dequant), nnq.DeQuantize)
def checkWrappedQuantizedLinear(self, mod):
r"""Checks that mod has been swapped for an nnq.Linear
module, the bias is qint32, and that the module
has Quantize and DeQuantize submodules
"""
self.assertEqual(type(mod.module), nnq.Linear)
self.assertEqual(mod.module.bias.dtype, torch.qint32)
self.checkQuantDequant(mod)
def checkQuantizedLinear(self, mod):
self.assertEqual(type(mod), nnq.Linear)
self.assertEqual(mod.bias.dtype, torch.qint32)
def checkDynamicQuantizedLinear(self, mod):
r"""Checks that mod has been swapped for an nnqd.Linear
module, the bias is float.
"""
self.assertEqual(type(mod), nnqd.Linear)
self.assertEqual(mod.bias.dtype, torch.float)
def checkLinear(self, mod):
self.assertEqual(type(mod), torch.nn.Linear)
# calib_data follows the same schema as calib_data for
# test_only_eval_fn, i.e. (input iterable, output iterable)
def checkScriptable(self, orig_mod, calib_data, check_save_load=False):
scripted = torch.jit.script(orig_mod)
self._checkScriptable(orig_mod, scripted, calib_data, check_save_load)
# Use first calib_data entry as trace input
#
# TODO: Trace checking is blocked on this issue:
# https://github.com/pytorch/pytorch/issues/23986
#
# Once that's resolved we can remove `check_trace=False`
traced = torch.jit.trace(orig_mod, calib_data[0][0], check_trace=False)
self._checkScriptable(orig_mod, traced, calib_data, check_save_load)
# Call this twice: once for a scripted module and once for a traced module
def _checkScriptable(self, orig_mod, script_mod, calib_data, check_save_load):
self._checkModuleCorrectnessAgainstOrig(orig_mod, script_mod, calib_data)
# Test save/load
buffer = io.BytesIO()
torch.jit.save(script_mod, buffer)
buffer.seek(0)
loaded_mod = torch.jit.load(buffer)
# Pending __get_state_ and __set_state__ support
# See tracking task https://github.com/pytorch/pytorch/issues/23984
if check_save_load:
self._checkModuleCorrectnessAgainstOrig(orig_mod, loaded_mod, calib_data)
def _checkModuleCorrectnessAgainstOrig(self, orig_mod, test_mod, calib_data):
for (inp, _) in calib_data:
ref_output = orig_mod(inp)
scripted_output = test_mod(inp)
self.assertEqual(scripted_output, ref_output)
# Below are a series of neural net models to use in testing quantization
class SingleLayerLinearModel(torch.nn.Module):
def __init__(self):
super(SingleLayerLinearModel, self).__init__()
self.qconfig = default_qconfig
self.fc1 = QuantWrapper(torch.nn.Linear(5, 5).to(dtype=torch.float))
def forward(self, x):
x = self.fc1(x)
return x
class SingleLayerLinearDynamicModel(torch.nn.Module):
def __init__(self):
super(SingleLayerLinearDynamicModel, self).__init__()
self.qconfig = default_qconfig
self.fc1 = torch.nn.Linear(5, 5).to(dtype=torch.float)
def forward(self, x):
x = self.fc1(x)
return x
class TwoLayerLinearModel(torch.nn.Module):
def __init__(self):
super(TwoLayerLinearModel, self).__init__()
self.fc1 = torch.nn.Linear(5, 8).to(dtype=torch.float)
self.fc2 = torch.nn.Linear(8, 5).to(dtype=torch.float)
def forward(self, x):
x = self.fc1(x)
x = self.fc2(x)
return x
class AnnotatedTwoLayerLinearModel(torch.nn.Module):
def __init__(self):
super(AnnotatedTwoLayerLinearModel, self).__init__()
self.fc1 = torch.nn.Linear(5, 8).to(dtype=torch.float)
self.fc2 = QuantWrapper(torch.nn.Linear(8, 5).to(dtype=torch.float))
self.fc2.qconfig = default_qconfig
def forward(self, x):
x = self.fc1(x)
x = self.fc2(x)
return x
class LinearReluModel(torch.nn.Module):
def __init__(self):
super(LinearReluModel, self).__init__()
self.fc = torch.nn.Linear(5, 5).to(dtype=torch.float)
self.relu = torch.nn.ReLU()
def forward(self, x):
x = self.relu(self.fc(x))
return x
class NestedModel(torch.nn.Module):
def __init__(self):
super(NestedModel, self).__init__()
self.sub1 = LinearReluModel()
self.sub2 = TwoLayerLinearModel()
self.fc3 = torch.nn.Linear(5, 5).to(dtype=torch.float)
def forward(self, x):
x = self.sub1(x)
x = self.sub2(x)
x = self.fc3(x)
return x
class AnnotatedNestedModel(torch.nn.Module):
def __init__(self):
super(AnnotatedNestedModel, self).__init__()
self.sub1 = LinearReluModel()
self.sub2 = TwoLayerLinearModel()
self.fc3 = QuantWrapper(torch.nn.Linear(5, 5).to(dtype=torch.float))
self.fc3.qconfig = default_qconfig
self.sub2.fc1 = QuantWrapper(self.sub2.fc1)
self.sub2.fc1.qconfig = default_qconfig
def forward(self, x):
x = self.sub1(x)
x = self.sub2(x)
x = self.fc3(x)
return x
class AnnotatedSubNestedModel(torch.nn.Module):
def __init__(self):
super(AnnotatedSubNestedModel, self).__init__()
self.sub1 = LinearReluModel()
self.sub2 = QuantWrapper(TwoLayerLinearModel())
self.fc3 = QuantWrapper(torch.nn.Linear(5, 5).to(dtype=torch.float))
self.fc3.qconfig = default_qconfig
self.sub2.qconfig = default_qconfig
def forward(self, x):
x = self.sub1(x)
x = self.sub2(x)
x = self.fc3(x)
return x
class AnnotatedCustomConfigNestedModel(torch.nn.Module):
def __init__(self):
super(AnnotatedCustomConfigNestedModel, self).__init__()
self.sub1 = LinearReluModel()
self.sub2 = TwoLayerLinearModel()
self.fc3 = QuantWrapper(torch.nn.Linear(5, 5).to(dtype=torch.float))
self.fc3.qconfig = default_qconfig
self.sub2.qconfig = default_qconfig
custom_options = {
'dtype': torch.quint8,
'qscheme': torch.per_tensor_affine
}
custom_qconfig = QConfig(weight=default_weight_observer(),
activation=default_observer(**custom_options))
self.sub2.fc1.qconfig = custom_qconfig
self.sub2.fc1 = QuantWrapper(self.sub2.fc1)
self.sub2.fc2 = QuantWrapper(self.sub2.fc2)
def forward(self, x):
x = self.sub1(x)
x = self.sub2(x)
x = self.fc3(x)
return x
class QuantSubModel(torch.nn.Module):
def __init__(self):
super(QuantSubModel, self).__init__()
self.sub1 = LinearReluModel()
self.sub2 = QuantWrapper(TwoLayerLinearModel())
self.sub2.qconfig = default_qconfig
self.fc3 = torch.nn.Linear(5, 5).to(dtype=torch.float)
self.fc3.qconfig = default_qconfig
def forward(self, x):
x = self.sub1(x)
x = self.sub2(x)
x = self.fc3(x)
return x
class InnerModule(torch.nn.Module):
def __init__(self):
super(InnerModule, self).__init__()
self.fc1 = torch.nn.Linear(5, 8).to(dtype=torch.float)
self.relu = torch.nn.ReLU()
self.fc2 = torch.nn.Linear(8, 5).to(dtype=torch.float)
def forward(self, x):
return self.relu(self.fc2(self.relu(self.fc1(x))))
class SkipQuantModel(torch.nn.Module):
r"""We can skip quantization by explicitly
setting qconfig of a submodule to None
"""
def __init__(self):
super(SkipQuantModel, self).__init__()
self.qconfig = default_qconfig
self.sub = QuantWrapper(InnerModule())
self.fc = torch.nn.Linear(5, 5).to(dtype=torch.float)
# don't quantize this fc
self.fc.qconfig = None
def forward(self, x):
return self.fc(self.sub(x))
class QuantStubModel(torch.nn.Module):
r"""A Module with manually inserted `QuantStub` and `DeQuantStub`
"""
def __init__(self):
super(QuantStubModel, self).__init__()
self.qconfig = default_qconfig
self.quant = QuantStub()
self.dequant = DeQuantStub()
self.fc = torch.nn.Linear(5, 5).to(dtype=torch.float)
def forward(self, x):
x = self.quant(x)
x = self.fc(x)
return self.dequant(x)
class ManualLinearQATModel(torch.nn.Module):
r"""A Module with manually inserted `QuantStub` and `DeQuantStub`
"""
def __init__(self):
super(ManualLinearQATModel, self).__init__()
self.qconfig = default_qat_qconfig
self.quant = QuantStub()
self.dequant = DeQuantStub()
self.fc1 = torch.nn.Linear(5, 1).to(dtype=torch.float)
self.fc2 = torch.nn.Linear(1, 10).to(dtype=torch.float)
def forward(self, x):
x = self.quant(x)
x = self.fc1(x)
x = self.fc2(x)
return self.dequant(x)
class ManualConvLinearQATModel(torch.nn.Module):
r"""A module with manually inserted `QuantStub` and `DeQuantStub`
and contains both linear and conv modules
"""
def __init__(self):
super(ManualConvLinearQATModel, self).__init__()
self.qconfig = default_qat_qconfig
self.quant = QuantStub()
self.dequant = DeQuantStub()
self.conv = torch.nn.Conv2d(3, 1, kernel_size=3).to(dtype=torch.float)
self.fc1 = torch.nn.Linear(64, 10).to(dtype=torch.float)
self.fc2 = torch.nn.Linear(10, 10).to(dtype=torch.float)
def forward(self, x):
x = self.quant(x)
x = self.conv(x)
x = x.view(-1, 64).contiguous()
x = self.fc1(x)
x = self.fc2(x)
return self.dequant(x)
class SubModelForFusion(nn.Module):
def __init__(self):
super(SubModelForFusion, self).__init__()
self.conv = nn.Conv2d(2, 2, 1, bias=None).to(dtype=torch.float)
self.bn = nn.BatchNorm2d(2).to(dtype=torch.float)
def forward(self, x):
x = self.conv(x)
x = self.bn(x)
return x
class SubModelWithoutFusion(nn.Module):
def __init__(self):
super(SubModelWithoutFusion, self).__init__()
self.conv = nn.Conv2d(2, 2, 1, bias=None).to(dtype=torch.float)
self.relu = nn.ReLU(inplace=False).to(dtype=torch.float)
def forward(self, x):
return self.relu(self.conv(x))
class ModelForFusion(nn.Module):
def __init__(self, qconfig):
super(ModelForFusion, self).__init__()
self.conv1 = nn.Conv2d(3, 2, 5, bias=None).to(dtype=torch.float)
self.bn1 = nn.BatchNorm2d(2).to(dtype=torch.float)
self.relu1 = nn.ReLU(inplace=False).to(dtype=torch.float)
self.sub1 = SubModelForFusion()
self.sub2 = SubModelWithoutFusion()
self.fc = nn.Linear(72, 10).to(dtype=torch.float)
self.quant = QuantStub()
self.dequant = DeQuantStub()
self.qconfig = qconfig
# don't quantize sub2
self.sub2.qconfig = None
self.fc.qconfig = None
def forward(self, x):
x = self.quant(x)
x = self.conv1(x)
x = self.bn1(x)
x = self.relu1(x)
x = self.sub1(x)
x = self.dequant(x)
x = self.sub2(x)
x = x.view(-1, 72).contiguous()
x = self.fc(x)
return x
class DummyObserver(torch.nn.Module):
def calculate_qparams(self):
return 1.0, 0
def forward(self, x):
return x
class ModForWrapping(torch.nn.Module):
def __init__(self, quantized=False):
super(ModForWrapping, self).__init__()
self.qconfig = default_qconfig
if quantized:
self.mycat = nnq.QFunctional()
self.myadd = nnq.QFunctional()
else:
self.mycat = nnq.FloatFunctional()
self.myadd = nnq.FloatFunctional()
self.mycat.observer = DummyObserver()
self.myadd.observer = DummyObserver()
def forward(self, x):
y = self.mycat.cat([x, x, x])
z = self.myadd.add(y, y)
return z
@classmethod
def from_float(cls, mod):
new_mod = cls(quantized=True)
new_mod.mycat = new_mod.mycat.from_float(mod.mycat)
new_mod.myadd = new_mod.myadd.from_float(mod.myadd)
return new_mod
class ResNetBase(torch.nn.Module):
def __init__(self):
super(ResNetBase, self).__init__()
norm_layer = nn.BatchNorm2d
inplanes = 3
self.conv1 = nn.Conv2d(inplanes, inplanes, (1, 1), bias=False)
self.bn1 = norm_layer(inplanes)
self.relu1 = nn.ReLU()
self.relu2 = nn.ReLU()
self.downsample = torch.nn.Identity()
self.myop = nn.quantized.FloatFunctional()
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
def forward(self, x):
out = self.conv1(x)
out = self.bn1(out)
out = self.relu1(out)
identity = self.downsample(x)
out = self.myop.add(out, identity)
out = self.relu2(out)
out = self.avgpool(out)
return out