forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_quantized_nn_mods.py
485 lines (424 loc) · 20.3 KB
/
test_quantized_nn_mods.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import torch
import torch.nn.quantized as nnq
import torch.nn.quantized.dynamic as nnqd
import torch.nn._intrinsic.quantized as nnq_fused
import torch.nn.quantized.functional as qF
from torch.nn.quantized.modules import Conv2d
from torch.nn._intrinsic.quantized import ConvReLU2d
import torch.quantization
from common_utils import run_tests, tempfile
from common_quantization import QuantizationTestCase, no_deadline, prepare_dynamic
from common_quantized import _calculate_dynamic_qparams
from hypothesis import given
from hypothesis import strategies as st
import unittest
'''
Note that tests in this file are just API test, to make sure we wrapped the
quantized operator implementations correctly in the user facing APIs, these are
not correctness test for the underlying quantized operators. For correctness
test please see `caffe2/test/test_quantized.py`.
'''
class FunctionalAPITest(QuantizationTestCase):
def test_relu_api(self):
X = torch.arange(-5, 5, dtype=torch.float)
scale = 2.0
zero_point = 1
qX = torch.quantize_linear(X, scale=scale, zero_point=zero_point, dtype=torch.quint8)
qY = torch.relu(qX)
qY_hat = qF.relu(qX)
self.assertEqual(qY, qY_hat)
class DynamicModuleAPITest(QuantizationTestCase):
@no_deadline
@unittest.skipIf(
not torch.fbgemm_is_cpu_supported(),
" Quantized operations require FBGEMM. FBGEMM is only optimized for CPUs"
" with instruction set support avx2 or newer.",
)
@given(
batch_size=st.integers(1, 5),
in_features=st.integers(16, 32),
out_features=st.integers(4, 8),
use_bias=st.booleans(),
use_default_observer=st.booleans(),
)
def test_linear_api(self, batch_size, in_features, out_features, use_bias, use_default_observer):
"""test API functionality for nn.quantized.dynamic.Linear"""
W = torch.rand(out_features, in_features).float()
W_scale, W_zp = _calculate_dynamic_qparams(W, torch.qint8)
W_q = torch.quantize_linear(W, W_scale, W_zp, torch.qint8)
X = torch.rand(batch_size, in_features).float()
B = torch.rand(out_features).float() if use_bias else None
qlinear = nnqd.Linear(in_features, out_features)
# Run module with default-initialized parameters.
# This tests that the constructor is correct.
qlinear(X)
qlinear.set_weight(W_q)
# Simple round-trip test to ensure weight()/set_weight() API
self.assertEqual(qlinear.weight(), W_q)
W_pack = qlinear._packed_weight
qlinear.bias = B if use_bias else None
Z_dq = qlinear(X)
# Check if the module implementation matches calling the
# ops directly
Z_ref = torch.ops.quantized.fbgemm_linear_dynamic(X, W_pack, B)
self.assertEqual(Z_ref, Z_dq)
# Test serialization of dynamic quantized Linear Module using state_dict
model_dict = qlinear.state_dict()
self.assertEqual(model_dict['weight'], W_q)
if use_bias:
self.assertEqual(model_dict['bias'], B)
with tempfile.TemporaryFile() as f:
torch.save(model_dict, f)
f.seek(0)
loaded_dict = torch.load(f)
for key in model_dict:
self.assertEqual(model_dict[key], loaded_dict[key])
loaded_qlinear = nnqd.Linear(in_features, out_features)
loaded_qlinear.load_state_dict(loaded_dict)
linear_unpack = torch.ops.quantized.fbgemm_linear_unpack
self.assertEqual(linear_unpack(qlinear._packed_weight),
linear_unpack(loaded_qlinear._packed_weight))
if use_bias:
self.assertEqual(qlinear.bias, loaded_qlinear.bias)
self.assertTrue(dir(qlinear) == dir(loaded_qlinear))
self.assertTrue(hasattr(qlinear, '_packed_weight'))
self.assertTrue(hasattr(loaded_qlinear, '_packed_weight'))
self.assertTrue(hasattr(qlinear, 'weight'))
self.assertTrue(hasattr(loaded_qlinear, 'weight'))
self.assertEqual(qlinear.weight(), loaded_qlinear.weight())
self.assertEqual(qlinear.weight(), torch.ops.quantized.fbgemm_linear_unpack(qlinear._packed_weight))
Z_dq2 = qlinear(X)
self.assertEqual(Z_dq, Z_dq2)
# test serialization of module directly
with tempfile.TemporaryFile() as f:
torch.save(qlinear, f)
f.seek(0)
loaded = torch.load(f)
# This check is disabled pending an issue in PyTorch serialization:
# https://github.com/pytorch/pytorch/issues/24045
# self.assertEqual(qlinear.weight(), loaded.weight())
self.assertEqual(qlinear.zero_point, loaded.zero_point)
# Test JIT
self.checkScriptable(qlinear, list(zip([X], [Z_ref])), check_save_load=True)
# Test from_float
float_linear = torch.nn.Linear(in_features, out_features).float()
if use_default_observer:
float_linear.qconfig = torch.quantization.default_dynamic_qconfig
prepare_dynamic(float_linear)
float_linear(X.float())
quantized_float_linear = nnqd.Linear.from_float(float_linear)
# Smoke test to make sure the module actually runs
quantized_float_linear(X)
# Smoke test extra_repr
str(quantized_float_linear)
class ModuleAPITest(QuantizationTestCase):
def test_relu(self):
relu_module = nnq.ReLU()
relu6_module = nnq.ReLU6()
x = torch.arange(-10, 10, dtype=torch.float)
y_ref = torch.relu(x)
y6_ref = torch.nn.modules.ReLU6()(x)
qx = torch.quantize_linear(x, 1.0, 0, dtype=torch.qint32)
qy = relu_module(qx)
qy6 = relu6_module(qx)
self.assertEqual(y_ref, qy.dequantize(),
message="ReLU module API failed")
self.assertEqual(y6_ref, qy6.dequantize(),
message="ReLU6 module API failed")
@no_deadline
@unittest.skipIf(
not torch.fbgemm_is_cpu_supported(),
" Quantized operations require FBGEMM. FBGEMM is only optimized for CPUs"
" with instruction set support avx2 or newer.",
)
@given(
batch_size=st.integers(1, 5),
in_features=st.integers(16, 32),
out_features=st.integers(4, 8),
use_bias=st.booleans(),
use_fused=st.booleans(),
)
def test_linear_api(self, batch_size, in_features, out_features, use_bias, use_fused):
"""test API functionality for nn.quantized.linear and nn._intrinsic.quantized.linear_relu"""
W = torch.rand(out_features, in_features).float()
W_q = torch.quantize_linear(W, 0.1, 4, torch.qint8)
X = torch.rand(batch_size, in_features).float()
X_q = torch.quantize_linear(X, 0.2, 10, torch.quint8)
B = torch.rand(out_features).float() if use_bias else None
B_q = torch.quantize_linear(B, W_q.q_scale() * X_q.q_scale(), 0, torch.qint32) if use_bias else None
scale = 0.5
zero_point = 3
if use_fused:
qlinear = nnq_fused.LinearReLU(in_features, out_features)
else:
qlinear = nnq.Linear(in_features, out_features)
# Run module with default-initialized parameters.
# This tests that the constructor is correct.
qlinear(X_q)
qlinear.set_weight(W_q)
# Simple round-trip test to ensure weight()/set_weight() API
self.assertEqual(qlinear.weight(), W_q)
W_pack = qlinear._packed_weight
qlinear.bias = B_q if use_bias else None
qlinear.scale = float(scale)
qlinear.zero_point = int(zero_point)
Z_q = qlinear(X_q)
# Check if the module implementation matches calling the
# ops directly
if use_fused:
Z_ref = torch.ops.quantized.fbgemm_linear_relu(X_q, W_pack, B_q, scale, zero_point)
else:
Z_ref = torch.ops.quantized.fbgemm_linear(X_q, W_pack, B_q, scale, zero_point)
self.assertEqual(Z_ref, Z_q)
# Test serialization of quantized Linear Module using state_dict
model_dict = qlinear.state_dict()
self.assertEqual(model_dict['weight'], W_q)
if use_bias:
self.assertEqual(model_dict['bias'], B_q)
with tempfile.TemporaryFile() as f:
torch.save(model_dict, f)
f.seek(0)
loaded_dict = torch.load(f)
for key in model_dict:
self.assertEqual(model_dict[key], loaded_dict[key])
if use_fused:
loaded_qlinear = nnq_fused.LinearReLU(in_features, out_features)
else:
loaded_qlinear = nnq.Linear(in_features, out_features)
loaded_qlinear.load_state_dict(loaded_dict)
linear_unpack = torch.ops.quantized.fbgemm_linear_unpack
self.assertEqual(linear_unpack(qlinear._packed_weight),
linear_unpack(loaded_qlinear._packed_weight))
if use_bias:
self.assertEqual(qlinear.bias, loaded_qlinear.bias)
self.assertEqual(qlinear.scale, loaded_qlinear.scale)
self.assertEqual(qlinear.zero_point, loaded_qlinear.zero_point)
self.assertTrue(dir(qlinear) == dir(loaded_qlinear))
self.assertTrue(hasattr(qlinear, '_packed_weight'))
self.assertTrue(hasattr(loaded_qlinear, '_packed_weight'))
self.assertTrue(hasattr(qlinear, 'weight'))
self.assertTrue(hasattr(loaded_qlinear, 'weight'))
self.assertEqual(qlinear.weight(), loaded_qlinear.weight())
self.assertEqual(qlinear.weight(), torch.ops.quantized.fbgemm_linear_unpack(qlinear._packed_weight))
Z_q2 = loaded_qlinear(X_q)
self.assertEqual(Z_q, Z_q2)
# test serialization of module directly
with tempfile.TemporaryFile() as f:
torch.save(qlinear, f)
f.seek(0)
loaded = torch.load(f)
# This check is disabled pending an issue in PyTorch serialization:
# https://github.com/pytorch/pytorch/issues/24045
# self.assertEqual(qlinear.weight(), loaded.weight())
self.assertEqual(qlinear.bias, loaded.bias)
self.assertEqual(qlinear.scale, loaded.scale)
self.assertEqual(qlinear.zero_point, loaded.zero_point)
# Test JIT
self.checkScriptable(qlinear, list(zip([X_q], [Z_ref])), check_save_load=True)
# Test from_float
float_linear = torch.nn.Linear(in_features, out_features).float()
float_linear.qconfig = torch.quantization.default_qconfig
torch.quantization.prepare(float_linear)
float_linear(X.float())
quantized_float_linear = torch.quantization.convert(float_linear)
# Smoke test to make sure the module actually runs
quantized_float_linear(X_q)
# Smoke test extra_repr
str(quantized_float_linear)
def test_quant_dequant_api(self):
r = torch.tensor([[1., -1.], [1., -1.]], dtype=torch.float)
scale, zero_point, dtype = 1.0, 2, torch.qint8
# testing Quantize API
qr = torch.quantize_linear(r, scale, zero_point, dtype)
quant_m = nnq.Quantize(scale, zero_point, dtype)
qr2 = quant_m(r)
self.assertEqual(qr, qr2)
# testing Dequantize API
rqr = qr.dequantize()
dequant_m = nnq.DeQuantize()
rqr2 = dequant_m(qr2)
self.assertEqual(rqr, rqr2)
@no_deadline
@unittest.skipIf(
not torch.fbgemm_is_cpu_supported(),
" Quantized operations require FBGEMM. FBGEMM is only optimized for CPUs"
" with instruction set support avx2 or newer.",
)
@given(
use_bias=st.booleans(),
use_fused=st.booleans(),
)
def test_conv_api(self, use_bias, use_fused):
"""Tests the correctness of the conv module.
The correctness is defined against the functional implementation.
"""
N, iC, H, W = 10, 10, 10, 3
oC, g, kH, kW = 16, 1, 3, 3
scale, zero_point = 1.0 / 255, 128
X = torch.randn(N, iC, H, W, dtype=torch.float32)
X = X.permute([0, 2, 3, 1]).contiguous()
qX = torch.quantize_linear(X, scale=scale, zero_point=128, dtype=torch.quint8)
w = torch.randn(oC, iC // g, kH, kW, dtype=torch.float32)
qw = torch.quantize_linear(w, scale=scale, zero_point=0, dtype=torch.qint8)
b = torch.randn(oC, dtype=torch.float32) if use_bias else None
qb = torch.quantize_linear(b, scale=1.0 / 1024, zero_point=0, dtype=torch.qint32) if use_bias else None
if use_fused:
conv_under_test = ConvReLU2d(in_channels=iC,
out_channels=oC,
kernel_size=(kH, kW),
stride=1,
padding=0,
dilation=1,
groups=g,
bias=use_bias,
padding_mode='zeros')
else:
conv_under_test = Conv2d(in_channels=iC,
out_channels=oC,
kernel_size=(kH, kW),
stride=1,
padding=0,
dilation=1,
groups=g,
bias=use_bias,
padding_mode='zeros')
# Run module with default-initialized parameters.
# This tests that the constructor is correct.
conv_under_test(qX)
conv_under_test.set_weight(qw)
conv_under_test.bias = qb
conv_under_test.scale = scale
conv_under_test.zero_point = zero_point
# Test members
self.assertTrue(hasattr(conv_under_test, '_packed_weight'))
self.assertTrue(hasattr(conv_under_test, 'scale'))
self.assertTrue(hasattr(conv_under_test, 'zero_point'))
# Test properties
self.assertEqual(qw, conv_under_test.weight())
self.assertEqual(qb, conv_under_test.bias)
self.assertEqual(scale, conv_under_test.scale)
self.assertEqual(zero_point, conv_under_test.zero_point)
# Test forward
result_under_test = conv_under_test(qX)
result_reference = qF.conv2d(qX, qw, bias=qb,
scale=scale, zero_point=zero_point,
stride=1, padding=0,
dilation=1, groups=g, dtype=torch.quint8
)
if use_fused:
# result_reference < zero_point doesn't work for qtensor yet
# result_reference[result_reference < zero_point] = zero_point
MB, OC, OH, OW = result_reference.size()
for i in range(MB):
for j in range(OC):
for h in range(OH):
for w in range(OW):
if result_reference[i][j][h][w].int_repr() < zero_point:
# assign 0. that gets converted to zero_point
result_reference[i][j][h][w] = 0.
self.assertEqual(result_reference, result_under_test,
message="Tensors are not equal.")
# Test serialization of quantized Conv Module using state_dict
model_dict = conv_under_test.state_dict()
self.assertEqual(model_dict['weight'], qw)
if use_bias:
self.assertEqual(model_dict['bias'], qb)
with tempfile.NamedTemporaryFile() as f:
torch.save(model_dict, f)
f.seek(0)
loaded_dict = torch.load(f)
for key in model_dict:
self.assertEqual(loaded_dict[key], model_dict[key])
if use_fused:
loaded_conv_under_test = ConvReLU2d(in_channels=iC,
out_channels=oC,
kernel_size=(kH, kW),
stride=1,
padding=0,
dilation=1,
groups=g,
bias=use_bias,
padding_mode='zeros')
else:
loaded_conv_under_test = Conv2d(in_channels=iC,
out_channels=oC,
kernel_size=(kH, kW),
stride=1,
padding=0,
dilation=1,
groups=g,
bias=use_bias,
padding_mode='zeros')
loaded_conv_under_test.load_state_dict(loaded_dict)
self.assertEqual(loaded_conv_under_test.weight(), conv_under_test.weight())
if use_bias:
self.assertEqual(loaded_conv_under_test.bias, conv_under_test.bias)
self.assertEqual(loaded_conv_under_test.scale, conv_under_test.scale)
self.assertEqual(loaded_conv_under_test.zero_point, conv_under_test.zero_point)
self.assertTrue(dir(loaded_conv_under_test) == dir(conv_under_test))
self.assertTrue(hasattr(conv_under_test, '_packed_weight'))
self.assertTrue(hasattr(loaded_conv_under_test, '_packed_weight'))
self.assertTrue(hasattr(conv_under_test, 'weight'))
self.assertTrue(hasattr(loaded_conv_under_test, 'weight'))
self.assertEqual(loaded_conv_under_test.weight(), conv_under_test.weight())
self.assertEqual(loaded_conv_under_test.weight(), qw)
loaded_result = loaded_conv_under_test(qX)
self.assertEqual(loaded_result, result_reference)
with tempfile.NamedTemporaryFile() as f:
torch.save(conv_under_test, f)
f.seek(0)
loaded_conv = torch.load(f)
self.assertEqual(conv_under_test.bias, loaded_conv.bias)
self.assertEqual(conv_under_test.scale, loaded_conv.scale)
self.assertEqual(conv_under_test.zero_point, loaded_conv.zero_point)
# JIT testing
self.checkScriptable(conv_under_test, list(zip([qX], [result_reference])), check_save_load=True)
# Test from_float
float_conv = torch.nn.Conv2d(in_channels=iC,
out_channels=oC,
kernel_size=(kH, kW),
stride=1,
padding=0,
dilation=1,
groups=g,
bias=use_bias,
padding_mode='zeros').float()
float_conv.qconfig = torch.quantization.default_qconfig
torch.quantization.prepare(float_conv)
float_conv(X.float())
quantized_float_conv = torch.quantization.convert(float_conv)
# Smoke test to make sure the module actually runs
quantized_float_conv(qX)
# Check that bias is quantized based on output scale
if use_bias:
qbias = torch.quantize_linear(float_conv.bias, quantized_float_conv.scale / 2**16, 0, torch.qint32)
self.assertEqual(quantized_float_conv.bias.dequantize(), qbias.dequantize())
# Smoke test extra_repr
str(quantized_float_conv)
def test_pool_api(self):
"""Tests the correctness of the pool module.
The correctness is defined against the functional implementation.
"""
N, C, H, W = 10, 10, 10, 3
kwargs = {
'kernel_size': 2,
'stride': None,
'padding': 0,
'dilation': 1
}
scale, zero_point = 1.0 / 255, 128
X = torch.randn(N, C, H, W, dtype=torch.float32)
qX = torch.quantize_linear(X, scale=scale, zero_point=zero_point,
dtype=torch.quint8)
qX_expect = torch.nn.functional.max_pool2d(qX, **kwargs)
pool_under_test = torch.nn.quantized.MaxPool2d(**kwargs)
qX_hat = pool_under_test(qX)
self.assertEqual(qX_expect, qX_hat)
# JIT Testing
self.checkScriptable(pool_under_test, list(zip([X], [qX_expect])))
if __name__ == '__main__':
run_tests()