forked from llvm-mirror/llvm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathScalarEvolution.cpp
5069 lines (4499 loc) · 201 KB
/
ScalarEvolution.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
//===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains the implementation of the scalar evolution analysis
// engine, which is used primarily to analyze expressions involving induction
// variables in loops.
//
// There are several aspects to this library. First is the representation of
// scalar expressions, which are represented as subclasses of the SCEV class.
// These classes are used to represent certain types of subexpressions that we
// can handle. We only create one SCEV of a particular shape, so
// pointer-comparisons for equality are legal.
//
// One important aspect of the SCEV objects is that they are never cyclic, even
// if there is a cycle in the dataflow for an expression (ie, a PHI node). If
// the PHI node is one of the idioms that we can represent (e.g., a polynomial
// recurrence) then we represent it directly as a recurrence node, otherwise we
// represent it as a SCEVUnknown node.
//
// In addition to being able to represent expressions of various types, we also
// have folders that are used to build the *canonical* representation for a
// particular expression. These folders are capable of using a variety of
// rewrite rules to simplify the expressions.
//
// Once the folders are defined, we can implement the more interesting
// higher-level code, such as the code that recognizes PHI nodes of various
// types, computes the execution count of a loop, etc.
//
// TODO: We should use these routines and value representations to implement
// dependence analysis!
//
//===----------------------------------------------------------------------===//
//
// There are several good references for the techniques used in this analysis.
//
// Chains of recurrences -- a method to expedite the evaluation
// of closed-form functions
// Olaf Bachmann, Paul S. Wang, Eugene V. Zima
//
// On computational properties of chains of recurrences
// Eugene V. Zima
//
// Symbolic Evaluation of Chains of Recurrences for Loop Optimization
// Robert A. van Engelen
//
// Efficient Symbolic Analysis for Optimizing Compilers
// Robert A. van Engelen
//
// Using the chains of recurrences algebra for data dependence testing and
// induction variable substitution
// MS Thesis, Johnie Birch
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "scalar-evolution"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/GlobalVariable.h"
#include "llvm/Instructions.h"
#include "llvm/LLVMContext.h"
#include "llvm/Operator.h"
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Analysis/Dominators.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/Assembly/Writer.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/ConstantRange.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/GetElementPtrTypeIterator.h"
#include "llvm/Support/InstIterator.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include <algorithm>
using namespace llvm;
STATISTIC(NumArrayLenItCounts,
"Number of trip counts computed with array length");
STATISTIC(NumTripCountsComputed,
"Number of loops with predictable loop counts");
STATISTIC(NumTripCountsNotComputed,
"Number of loops without predictable loop counts");
STATISTIC(NumBruteForceTripCountsComputed,
"Number of loops with trip counts computed by force");
static cl::opt<unsigned>
MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
cl::desc("Maximum number of iterations SCEV will "
"symbolically execute a constant "
"derived loop"),
cl::init(100));
static RegisterPass<ScalarEvolution>
R("scalar-evolution", "Scalar Evolution Analysis", false, true);
char ScalarEvolution::ID = 0;
//===----------------------------------------------------------------------===//
// SCEV class definitions
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// Implementation of the SCEV class.
//
SCEV::~SCEV() {}
void SCEV::dump() const {
print(errs());
errs() << '\n';
}
void SCEV::print(std::ostream &o) const {
raw_os_ostream OS(o);
print(OS);
}
bool SCEV::isZero() const {
if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
return SC->getValue()->isZero();
return false;
}
bool SCEV::isOne() const {
if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
return SC->getValue()->isOne();
return false;
}
bool SCEV::isAllOnesValue() const {
if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
return SC->getValue()->isAllOnesValue();
return false;
}
SCEVCouldNotCompute::SCEVCouldNotCompute() :
SCEV(FoldingSetNodeID(), scCouldNotCompute) {}
bool SCEVCouldNotCompute::isLoopInvariant(const Loop *L) const {
llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
return false;
}
const Type *SCEVCouldNotCompute::getType() const {
llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
return 0;
}
bool SCEVCouldNotCompute::hasComputableLoopEvolution(const Loop *L) const {
llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
return false;
}
bool SCEVCouldNotCompute::hasOperand(const SCEV *) const {
llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
return false;
}
void SCEVCouldNotCompute::print(raw_ostream &OS) const {
OS << "***COULDNOTCOMPUTE***";
}
bool SCEVCouldNotCompute::classof(const SCEV *S) {
return S->getSCEVType() == scCouldNotCompute;
}
const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
FoldingSetNodeID ID;
ID.AddInteger(scConstant);
ID.AddPointer(V);
void *IP = 0;
if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
SCEV *S = SCEVAllocator.Allocate<SCEVConstant>();
new (S) SCEVConstant(ID, V);
UniqueSCEVs.InsertNode(S, IP);
return S;
}
const SCEV *ScalarEvolution::getConstant(const APInt& Val) {
return getConstant(ConstantInt::get(getContext(), Val));
}
const SCEV *
ScalarEvolution::getConstant(const Type *Ty, uint64_t V, bool isSigned) {
return getConstant(
ConstantInt::get(cast<IntegerType>(Ty), V, isSigned));
}
const Type *SCEVConstant::getType() const { return V->getType(); }
void SCEVConstant::print(raw_ostream &OS) const {
WriteAsOperand(OS, V, false);
}
SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeID &ID,
unsigned SCEVTy, const SCEV *op, const Type *ty)
: SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
bool SCEVCastExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
return Op->dominates(BB, DT);
}
SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeID &ID,
const SCEV *op, const Type *ty)
: SCEVCastExpr(ID, scTruncate, op, ty) {
assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) &&
(Ty->isInteger() || isa<PointerType>(Ty)) &&
"Cannot truncate non-integer value!");
}
void SCEVTruncateExpr::print(raw_ostream &OS) const {
OS << "(trunc " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
}
SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeID &ID,
const SCEV *op, const Type *ty)
: SCEVCastExpr(ID, scZeroExtend, op, ty) {
assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) &&
(Ty->isInteger() || isa<PointerType>(Ty)) &&
"Cannot zero extend non-integer value!");
}
void SCEVZeroExtendExpr::print(raw_ostream &OS) const {
OS << "(zext " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
}
SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeID &ID,
const SCEV *op, const Type *ty)
: SCEVCastExpr(ID, scSignExtend, op, ty) {
assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) &&
(Ty->isInteger() || isa<PointerType>(Ty)) &&
"Cannot sign extend non-integer value!");
}
void SCEVSignExtendExpr::print(raw_ostream &OS) const {
OS << "(sext " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
}
void SCEVCommutativeExpr::print(raw_ostream &OS) const {
assert(Operands.size() > 1 && "This plus expr shouldn't exist!");
const char *OpStr = getOperationStr();
OS << "(" << *Operands[0];
for (unsigned i = 1, e = Operands.size(); i != e; ++i)
OS << OpStr << *Operands[i];
OS << ")";
}
bool SCEVNAryExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
if (!getOperand(i)->dominates(BB, DT))
return false;
}
return true;
}
bool SCEVUDivExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
return LHS->dominates(BB, DT) && RHS->dominates(BB, DT);
}
void SCEVUDivExpr::print(raw_ostream &OS) const {
OS << "(" << *LHS << " /u " << *RHS << ")";
}
const Type *SCEVUDivExpr::getType() const {
// In most cases the types of LHS and RHS will be the same, but in some
// crazy cases one or the other may be a pointer. ScalarEvolution doesn't
// depend on the type for correctness, but handling types carefully can
// avoid extra casts in the SCEVExpander. The LHS is more likely to be
// a pointer type than the RHS, so use the RHS' type here.
return RHS->getType();
}
bool SCEVAddRecExpr::isLoopInvariant(const Loop *QueryLoop) const {
// Add recurrences are never invariant in the function-body (null loop).
if (!QueryLoop)
return false;
// This recurrence is variant w.r.t. QueryLoop if QueryLoop contains L.
if (QueryLoop->contains(L->getHeader()))
return false;
// This recurrence is variant w.r.t. QueryLoop if any of its operands
// are variant.
for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
if (!getOperand(i)->isLoopInvariant(QueryLoop))
return false;
// Otherwise it's loop-invariant.
return true;
}
void SCEVAddRecExpr::print(raw_ostream &OS) const {
OS << "{" << *Operands[0];
for (unsigned i = 1, e = Operands.size(); i != e; ++i)
OS << ",+," << *Operands[i];
OS << "}<" << L->getHeader()->getName() + ">";
}
bool SCEVUnknown::isLoopInvariant(const Loop *L) const {
// All non-instruction values are loop invariant. All instructions are loop
// invariant if they are not contained in the specified loop.
// Instructions are never considered invariant in the function body
// (null loop) because they are defined within the "loop".
if (Instruction *I = dyn_cast<Instruction>(V))
return L && !L->contains(I->getParent());
return true;
}
bool SCEVUnknown::dominates(BasicBlock *BB, DominatorTree *DT) const {
if (Instruction *I = dyn_cast<Instruction>(getValue()))
return DT->dominates(I->getParent(), BB);
return true;
}
const Type *SCEVUnknown::getType() const {
return V->getType();
}
void SCEVUnknown::print(raw_ostream &OS) const {
WriteAsOperand(OS, V, false);
}
//===----------------------------------------------------------------------===//
// SCEV Utilities
//===----------------------------------------------------------------------===//
namespace {
/// SCEVComplexityCompare - Return true if the complexity of the LHS is less
/// than the complexity of the RHS. This comparator is used to canonicalize
/// expressions.
class VISIBILITY_HIDDEN SCEVComplexityCompare {
LoopInfo *LI;
public:
explicit SCEVComplexityCompare(LoopInfo *li) : LI(li) {}
bool operator()(const SCEV *LHS, const SCEV *RHS) const {
// Primarily, sort the SCEVs by their getSCEVType().
if (LHS->getSCEVType() != RHS->getSCEVType())
return LHS->getSCEVType() < RHS->getSCEVType();
// Aside from the getSCEVType() ordering, the particular ordering
// isn't very important except that it's beneficial to be consistent,
// so that (a + b) and (b + a) don't end up as different expressions.
// Sort SCEVUnknown values with some loose heuristics. TODO: This is
// not as complete as it could be.
if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS)) {
const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
// Order pointer values after integer values. This helps SCEVExpander
// form GEPs.
if (isa<PointerType>(LU->getType()) && !isa<PointerType>(RU->getType()))
return false;
if (isa<PointerType>(RU->getType()) && !isa<PointerType>(LU->getType()))
return true;
// Compare getValueID values.
if (LU->getValue()->getValueID() != RU->getValue()->getValueID())
return LU->getValue()->getValueID() < RU->getValue()->getValueID();
// Sort arguments by their position.
if (const Argument *LA = dyn_cast<Argument>(LU->getValue())) {
const Argument *RA = cast<Argument>(RU->getValue());
return LA->getArgNo() < RA->getArgNo();
}
// For instructions, compare their loop depth, and their opcode.
// This is pretty loose.
if (Instruction *LV = dyn_cast<Instruction>(LU->getValue())) {
Instruction *RV = cast<Instruction>(RU->getValue());
// Compare loop depths.
if (LI->getLoopDepth(LV->getParent()) !=
LI->getLoopDepth(RV->getParent()))
return LI->getLoopDepth(LV->getParent()) <
LI->getLoopDepth(RV->getParent());
// Compare opcodes.
if (LV->getOpcode() != RV->getOpcode())
return LV->getOpcode() < RV->getOpcode();
// Compare the number of operands.
if (LV->getNumOperands() != RV->getNumOperands())
return LV->getNumOperands() < RV->getNumOperands();
}
return false;
}
// Compare constant values.
if (const SCEVConstant *LC = dyn_cast<SCEVConstant>(LHS)) {
const SCEVConstant *RC = cast<SCEVConstant>(RHS);
if (LC->getValue()->getBitWidth() != RC->getValue()->getBitWidth())
return LC->getValue()->getBitWidth() < RC->getValue()->getBitWidth();
return LC->getValue()->getValue().ult(RC->getValue()->getValue());
}
// Compare addrec loop depths.
if (const SCEVAddRecExpr *LA = dyn_cast<SCEVAddRecExpr>(LHS)) {
const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
if (LA->getLoop()->getLoopDepth() != RA->getLoop()->getLoopDepth())
return LA->getLoop()->getLoopDepth() < RA->getLoop()->getLoopDepth();
}
// Lexicographically compare n-ary expressions.
if (const SCEVNAryExpr *LC = dyn_cast<SCEVNAryExpr>(LHS)) {
const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
for (unsigned i = 0, e = LC->getNumOperands(); i != e; ++i) {
if (i >= RC->getNumOperands())
return false;
if (operator()(LC->getOperand(i), RC->getOperand(i)))
return true;
if (operator()(RC->getOperand(i), LC->getOperand(i)))
return false;
}
return LC->getNumOperands() < RC->getNumOperands();
}
// Lexicographically compare udiv expressions.
if (const SCEVUDivExpr *LC = dyn_cast<SCEVUDivExpr>(LHS)) {
const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
if (operator()(LC->getLHS(), RC->getLHS()))
return true;
if (operator()(RC->getLHS(), LC->getLHS()))
return false;
if (operator()(LC->getRHS(), RC->getRHS()))
return true;
if (operator()(RC->getRHS(), LC->getRHS()))
return false;
return false;
}
// Compare cast expressions by operand.
if (const SCEVCastExpr *LC = dyn_cast<SCEVCastExpr>(LHS)) {
const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
return operator()(LC->getOperand(), RC->getOperand());
}
llvm_unreachable("Unknown SCEV kind!");
return false;
}
};
}
/// GroupByComplexity - Given a list of SCEV objects, order them by their
/// complexity, and group objects of the same complexity together by value.
/// When this routine is finished, we know that any duplicates in the vector are
/// consecutive and that complexity is monotonically increasing.
///
/// Note that we go take special precautions to ensure that we get determinstic
/// results from this routine. In other words, we don't want the results of
/// this to depend on where the addresses of various SCEV objects happened to
/// land in memory.
///
static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
LoopInfo *LI) {
if (Ops.size() < 2) return; // Noop
if (Ops.size() == 2) {
// This is the common case, which also happens to be trivially simple.
// Special case it.
if (SCEVComplexityCompare(LI)(Ops[1], Ops[0]))
std::swap(Ops[0], Ops[1]);
return;
}
// Do the rough sort by complexity.
std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
// Now that we are sorted by complexity, group elements of the same
// complexity. Note that this is, at worst, N^2, but the vector is likely to
// be extremely short in practice. Note that we take this approach because we
// do not want to depend on the addresses of the objects we are grouping.
for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
const SCEV *S = Ops[i];
unsigned Complexity = S->getSCEVType();
// If there are any objects of the same complexity and same value as this
// one, group them.
for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
if (Ops[j] == S) { // Found a duplicate.
// Move it to immediately after i'th element.
std::swap(Ops[i+1], Ops[j]);
++i; // no need to rescan it.
if (i == e-2) return; // Done!
}
}
}
}
//===----------------------------------------------------------------------===//
// Simple SCEV method implementations
//===----------------------------------------------------------------------===//
/// BinomialCoefficient - Compute BC(It, K). The result has width W.
/// Assume, K > 0.
static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
ScalarEvolution &SE,
const Type* ResultTy) {
// Handle the simplest case efficiently.
if (K == 1)
return SE.getTruncateOrZeroExtend(It, ResultTy);
// We are using the following formula for BC(It, K):
//
// BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
//
// Suppose, W is the bitwidth of the return value. We must be prepared for
// overflow. Hence, we must assure that the result of our computation is
// equal to the accurate one modulo 2^W. Unfortunately, division isn't
// safe in modular arithmetic.
//
// However, this code doesn't use exactly that formula; the formula it uses
// is something like the following, where T is the number of factors of 2 in
// K! (i.e. trailing zeros in the binary representation of K!), and ^ is
// exponentiation:
//
// BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
//
// This formula is trivially equivalent to the previous formula. However,
// this formula can be implemented much more efficiently. The trick is that
// K! / 2^T is odd, and exact division by an odd number *is* safe in modular
// arithmetic. To do exact division in modular arithmetic, all we have
// to do is multiply by the inverse. Therefore, this step can be done at
// width W.
//
// The next issue is how to safely do the division by 2^T. The way this
// is done is by doing the multiplication step at a width of at least W + T
// bits. This way, the bottom W+T bits of the product are accurate. Then,
// when we perform the division by 2^T (which is equivalent to a right shift
// by T), the bottom W bits are accurate. Extra bits are okay; they'll get
// truncated out after the division by 2^T.
//
// In comparison to just directly using the first formula, this technique
// is much more efficient; using the first formula requires W * K bits,
// but this formula less than W + K bits. Also, the first formula requires
// a division step, whereas this formula only requires multiplies and shifts.
//
// It doesn't matter whether the subtraction step is done in the calculation
// width or the input iteration count's width; if the subtraction overflows,
// the result must be zero anyway. We prefer here to do it in the width of
// the induction variable because it helps a lot for certain cases; CodeGen
// isn't smart enough to ignore the overflow, which leads to much less
// efficient code if the width of the subtraction is wider than the native
// register width.
//
// (It's possible to not widen at all by pulling out factors of 2 before
// the multiplication; for example, K=2 can be calculated as
// It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
// extra arithmetic, so it's not an obvious win, and it gets
// much more complicated for K > 3.)
// Protection from insane SCEVs; this bound is conservative,
// but it probably doesn't matter.
if (K > 1000)
return SE.getCouldNotCompute();
unsigned W = SE.getTypeSizeInBits(ResultTy);
// Calculate K! / 2^T and T; we divide out the factors of two before
// multiplying for calculating K! / 2^T to avoid overflow.
// Other overflow doesn't matter because we only care about the bottom
// W bits of the result.
APInt OddFactorial(W, 1);
unsigned T = 1;
for (unsigned i = 3; i <= K; ++i) {
APInt Mult(W, i);
unsigned TwoFactors = Mult.countTrailingZeros();
T += TwoFactors;
Mult = Mult.lshr(TwoFactors);
OddFactorial *= Mult;
}
// We need at least W + T bits for the multiplication step
unsigned CalculationBits = W + T;
// Calcuate 2^T, at width T+W.
APInt DivFactor = APInt(CalculationBits, 1).shl(T);
// Calculate the multiplicative inverse of K! / 2^T;
// this multiplication factor will perform the exact division by
// K! / 2^T.
APInt Mod = APInt::getSignedMinValue(W+1);
APInt MultiplyFactor = OddFactorial.zext(W+1);
MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
MultiplyFactor = MultiplyFactor.trunc(W);
// Calculate the product, at width T+W
const IntegerType *CalculationTy = IntegerType::get(CalculationBits);
const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
for (unsigned i = 1; i != K; ++i) {
const SCEV *S = SE.getMinusSCEV(It, SE.getIntegerSCEV(i, It->getType()));
Dividend = SE.getMulExpr(Dividend,
SE.getTruncateOrZeroExtend(S, CalculationTy));
}
// Divide by 2^T
const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
// Truncate the result, and divide by K! / 2^T.
return SE.getMulExpr(SE.getConstant(MultiplyFactor),
SE.getTruncateOrZeroExtend(DivResult, ResultTy));
}
/// evaluateAtIteration - Return the value of this chain of recurrences at
/// the specified iteration number. We can evaluate this recurrence by
/// multiplying each element in the chain by the binomial coefficient
/// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as:
///
/// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
///
/// where BC(It, k) stands for binomial coefficient.
///
const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
ScalarEvolution &SE) const {
const SCEV *Result = getStart();
for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
// The computation is correct in the face of overflow provided that the
// multiplication is performed _after_ the evaluation of the binomial
// coefficient.
const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
if (isa<SCEVCouldNotCompute>(Coeff))
return Coeff;
Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
}
return Result;
}
//===----------------------------------------------------------------------===//
// SCEV Expression folder implementations
//===----------------------------------------------------------------------===//
const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
const Type *Ty) {
assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
"This is not a truncating conversion!");
assert(isSCEVable(Ty) &&
"This is not a conversion to a SCEVable type!");
Ty = getEffectiveSCEVType(Ty);
FoldingSetNodeID ID;
ID.AddInteger(scTruncate);
ID.AddPointer(Op);
ID.AddPointer(Ty);
void *IP = 0;
if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
// Fold if the operand is constant.
if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
return getConstant(
cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
// trunc(trunc(x)) --> trunc(x)
if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
return getTruncateExpr(ST->getOperand(), Ty);
// trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
return getTruncateOrSignExtend(SS->getOperand(), Ty);
// trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
// If the input value is a chrec scev, truncate the chrec's operands.
if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
SmallVector<const SCEV *, 4> Operands;
for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
return getAddRecExpr(Operands, AddRec->getLoop());
}
// The cast wasn't folded; create an explicit cast node.
// Recompute the insert position, as it may have been invalidated.
if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
SCEV *S = SCEVAllocator.Allocate<SCEVTruncateExpr>();
new (S) SCEVTruncateExpr(ID, Op, Ty);
UniqueSCEVs.InsertNode(S, IP);
return S;
}
const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
const Type *Ty) {
assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
"This is not an extending conversion!");
assert(isSCEVable(Ty) &&
"This is not a conversion to a SCEVable type!");
Ty = getEffectiveSCEVType(Ty);
// Fold if the operand is constant.
if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) {
const Type *IntTy = getEffectiveSCEVType(Ty);
Constant *C = ConstantExpr::getZExt(SC->getValue(), IntTy);
if (IntTy != Ty) C = ConstantExpr::getIntToPtr(C, Ty);
return getConstant(cast<ConstantInt>(C));
}
// zext(zext(x)) --> zext(x)
if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
return getZeroExtendExpr(SZ->getOperand(), Ty);
// Before doing any expensive analysis, check to see if we've already
// computed a SCEV for this Op and Ty.
FoldingSetNodeID ID;
ID.AddInteger(scZeroExtend);
ID.AddPointer(Op);
ID.AddPointer(Ty);
void *IP = 0;
if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
// If the input value is a chrec scev, and we can prove that the value
// did not overflow the old, smaller, value, we can zero extend all of the
// operands (often constants). This allows analysis of something like
// this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
if (AR->isAffine()) {
const SCEV *Start = AR->getStart();
const SCEV *Step = AR->getStepRecurrence(*this);
unsigned BitWidth = getTypeSizeInBits(AR->getType());
const Loop *L = AR->getLoop();
// If we have special knowledge that this addrec won't overflow,
// we don't need to do any further analysis.
if (AR->hasNoUnsignedOverflow())
return getAddRecExpr(getZeroExtendExpr(Start, Ty),
getZeroExtendExpr(Step, Ty),
L);
// Check whether the backedge-taken count is SCEVCouldNotCompute.
// Note that this serves two purposes: It filters out loops that are
// simply not analyzable, and it covers the case where this code is
// being called from within backedge-taken count analysis, such that
// attempting to ask for the backedge-taken count would likely result
// in infinite recursion. In the later case, the analysis code will
// cope with a conservative value, and it will take care to purge
// that value once it has finished.
const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
// Manually compute the final value for AR, checking for
// overflow.
// Check whether the backedge-taken count can be losslessly casted to
// the addrec's type. The count is always unsigned.
const SCEV *CastedMaxBECount =
getTruncateOrZeroExtend(MaxBECount, Start->getType());
const SCEV *RecastedMaxBECount =
getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
if (MaxBECount == RecastedMaxBECount) {
const Type *WideTy = IntegerType::get(BitWidth * 2);
// Check whether Start+Step*MaxBECount has no unsigned overflow.
const SCEV *ZMul =
getMulExpr(CastedMaxBECount,
getTruncateOrZeroExtend(Step, Start->getType()));
const SCEV *Add = getAddExpr(Start, ZMul);
const SCEV *OperandExtendedAdd =
getAddExpr(getZeroExtendExpr(Start, WideTy),
getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
getZeroExtendExpr(Step, WideTy)));
if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd)
// Return the expression with the addrec on the outside.
return getAddRecExpr(getZeroExtendExpr(Start, Ty),
getZeroExtendExpr(Step, Ty),
L);
// Similar to above, only this time treat the step value as signed.
// This covers loops that count down.
const SCEV *SMul =
getMulExpr(CastedMaxBECount,
getTruncateOrSignExtend(Step, Start->getType()));
Add = getAddExpr(Start, SMul);
OperandExtendedAdd =
getAddExpr(getZeroExtendExpr(Start, WideTy),
getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
getSignExtendExpr(Step, WideTy)));
if (getZeroExtendExpr(Add, WideTy) == OperandExtendedAdd)
// Return the expression with the addrec on the outside.
return getAddRecExpr(getZeroExtendExpr(Start, Ty),
getSignExtendExpr(Step, Ty),
L);
}
// If the backedge is guarded by a comparison with the pre-inc value
// the addrec is safe. Also, if the entry is guarded by a comparison
// with the start value and the backedge is guarded by a comparison
// with the post-inc value, the addrec is safe.
if (isKnownPositive(Step)) {
const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
getUnsignedRange(Step).getUnsignedMax());
if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
(isLoopGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
AR->getPostIncExpr(*this), N)))
// Return the expression with the addrec on the outside.
return getAddRecExpr(getZeroExtendExpr(Start, Ty),
getZeroExtendExpr(Step, Ty),
L);
} else if (isKnownNegative(Step)) {
const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
getSignedRange(Step).getSignedMin());
if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) &&
(isLoopGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) ||
isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
AR->getPostIncExpr(*this), N)))
// Return the expression with the addrec on the outside.
return getAddRecExpr(getZeroExtendExpr(Start, Ty),
getSignExtendExpr(Step, Ty),
L);
}
}
}
// The cast wasn't folded; create an explicit cast node.
// Recompute the insert position, as it may have been invalidated.
if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
SCEV *S = SCEVAllocator.Allocate<SCEVZeroExtendExpr>();
new (S) SCEVZeroExtendExpr(ID, Op, Ty);
UniqueSCEVs.InsertNode(S, IP);
return S;
}
const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
const Type *Ty) {
assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
"This is not an extending conversion!");
assert(isSCEVable(Ty) &&
"This is not a conversion to a SCEVable type!");
Ty = getEffectiveSCEVType(Ty);
// Fold if the operand is constant.
if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) {
const Type *IntTy = getEffectiveSCEVType(Ty);
Constant *C = ConstantExpr::getSExt(SC->getValue(), IntTy);
if (IntTy != Ty) C = ConstantExpr::getIntToPtr(C, Ty);
return getConstant(cast<ConstantInt>(C));
}
// sext(sext(x)) --> sext(x)
if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
return getSignExtendExpr(SS->getOperand(), Ty);
// Before doing any expensive analysis, check to see if we've already
// computed a SCEV for this Op and Ty.
FoldingSetNodeID ID;
ID.AddInteger(scSignExtend);
ID.AddPointer(Op);
ID.AddPointer(Ty);
void *IP = 0;
if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
// If the input value is a chrec scev, and we can prove that the value
// did not overflow the old, smaller, value, we can sign extend all of the
// operands (often constants). This allows analysis of something like
// this: for (signed char X = 0; X < 100; ++X) { int Y = X; }
if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
if (AR->isAffine()) {
const SCEV *Start = AR->getStart();
const SCEV *Step = AR->getStepRecurrence(*this);
unsigned BitWidth = getTypeSizeInBits(AR->getType());
const Loop *L = AR->getLoop();
// If we have special knowledge that this addrec won't overflow,
// we don't need to do any further analysis.
if (AR->hasNoSignedOverflow())
return getAddRecExpr(getSignExtendExpr(Start, Ty),
getSignExtendExpr(Step, Ty),
L);
// Check whether the backedge-taken count is SCEVCouldNotCompute.
// Note that this serves two purposes: It filters out loops that are
// simply not analyzable, and it covers the case where this code is
// being called from within backedge-taken count analysis, such that
// attempting to ask for the backedge-taken count would likely result
// in infinite recursion. In the later case, the analysis code will
// cope with a conservative value, and it will take care to purge
// that value once it has finished.
const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
// Manually compute the final value for AR, checking for
// overflow.
// Check whether the backedge-taken count can be losslessly casted to
// the addrec's type. The count is always unsigned.
const SCEV *CastedMaxBECount =
getTruncateOrZeroExtend(MaxBECount, Start->getType());
const SCEV *RecastedMaxBECount =
getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
if (MaxBECount == RecastedMaxBECount) {
const Type *WideTy = IntegerType::get(BitWidth * 2);
// Check whether Start+Step*MaxBECount has no signed overflow.
const SCEV *SMul =
getMulExpr(CastedMaxBECount,
getTruncateOrSignExtend(Step, Start->getType()));
const SCEV *Add = getAddExpr(Start, SMul);
const SCEV *OperandExtendedAdd =
getAddExpr(getSignExtendExpr(Start, WideTy),
getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
getSignExtendExpr(Step, WideTy)));
if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd)
// Return the expression with the addrec on the outside.
return getAddRecExpr(getSignExtendExpr(Start, Ty),
getSignExtendExpr(Step, Ty),
L);
// Similar to above, only this time treat the step value as unsigned.
// This covers loops that count up with an unsigned step.
const SCEV *UMul =
getMulExpr(CastedMaxBECount,
getTruncateOrZeroExtend(Step, Start->getType()));
Add = getAddExpr(Start, UMul);
OperandExtendedAdd =
getAddExpr(getSignExtendExpr(Start, WideTy),
getMulExpr(getZeroExtendExpr(CastedMaxBECount, WideTy),
getZeroExtendExpr(Step, WideTy)));
if (getSignExtendExpr(Add, WideTy) == OperandExtendedAdd)
// Return the expression with the addrec on the outside.
return getAddRecExpr(getSignExtendExpr(Start, Ty),
getZeroExtendExpr(Step, Ty),
L);
}
// If the backedge is guarded by a comparison with the pre-inc value
// the addrec is safe. Also, if the entry is guarded by a comparison
// with the start value and the backedge is guarded by a comparison
// with the post-inc value, the addrec is safe.
if (isKnownPositive(Step)) {
const SCEV *N = getConstant(APInt::getSignedMinValue(BitWidth) -
getSignedRange(Step).getSignedMax());
if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT, AR, N) ||
(isLoopGuardedByCond(L, ICmpInst::ICMP_SLT, Start, N) &&
isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT,
AR->getPostIncExpr(*this), N)))
// Return the expression with the addrec on the outside.
return getAddRecExpr(getSignExtendExpr(Start, Ty),
getSignExtendExpr(Step, Ty),
L);
} else if (isKnownNegative(Step)) {
const SCEV *N = getConstant(APInt::getSignedMaxValue(BitWidth) -
getSignedRange(Step).getSignedMin());
if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT, AR, N) ||
(isLoopGuardedByCond(L, ICmpInst::ICMP_SGT, Start, N) &&
isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT,
AR->getPostIncExpr(*this), N)))
// Return the expression with the addrec on the outside.
return getAddRecExpr(getSignExtendExpr(Start, Ty),
getSignExtendExpr(Step, Ty),
L);
}
}
}
// The cast wasn't folded; create an explicit cast node.
// Recompute the insert position, as it may have been invalidated.
if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
SCEV *S = SCEVAllocator.Allocate<SCEVSignExtendExpr>();
new (S) SCEVSignExtendExpr(ID, Op, Ty);
UniqueSCEVs.InsertNode(S, IP);
return S;
}
/// getAnyExtendExpr - Return a SCEV for the given operand extended with
/// unspecified bits out to the given type.
///
const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
const Type *Ty) {
assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
"This is not an extending conversion!");
assert(isSCEVable(Ty) &&
"This is not a conversion to a SCEVable type!");
Ty = getEffectiveSCEVType(Ty);
// Sign-extend negative constants.
if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
if (SC->getValue()->getValue().isNegative())
return getSignExtendExpr(Op, Ty);
// Peel off a truncate cast.
if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
const SCEV *NewOp = T->getOperand();
if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
return getAnyExtendExpr(NewOp, Ty);
return getTruncateOrNoop(NewOp, Ty);
}
// Next try a zext cast. If the cast is folded, use it.
const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
if (!isa<SCEVZeroExtendExpr>(ZExt))