-
Notifications
You must be signed in to change notification settings - Fork 40
/
mask_rcnn_denseclip_r101_fpn_1x_coco.py
56 lines (55 loc) · 1.61 KB
/
mask_rcnn_denseclip_r101_fpn_1x_coco.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
_base_ = [
'../configs/_base_/models/mask_rcnn_r50_fpn.py',
'../configs/_base_/datasets/coco_instance_clip.py',
# '../configs/_base_/schedules/schedule_1x.py',
'../configs/_base_/default_runtime.py'
]
model = dict(
type='DenseCLIP_MaskRCNN',
pretrained='pretrained/RN101.pt',
context_length=5,
seg_loss=True,
clip_head=False,
text_dim=512,
backbone=dict(
type='CLIPResNetWithAttention',
layers=[3, 4, 23, 3],
output_dim=512,
input_resolution=1344,
style='pytorch'),
text_encoder=dict(
type='CLIPTextContextEncoder',
context_length=13,
embed_dim=512,
transformer_width=512,
transformer_heads=8,
transformer_layers=12,
style='pytorch'),
context_decoder=dict(
type='ContextDecoder',
transformer_width=256,
transformer_heads=4,
transformer_layers=3,
visual_dim=512,
dropout=0.1,
style='pytorch'),
neck=dict(
type='FPN',
in_channels=[256, 512, 1024, 2048 + 80],
out_channels=256,
num_outs=5)
)
# optimizer
optimizer = dict(type='AdamW', lr=0.0002, weight_decay=0.0001,
paramwise_cfg=dict(custom_keys={'backbone': dict(lr_mult=0.1),
'text_encoder': dict(lr_mult=0.0),
'norm': dict(decay_mult=0.)}))
optimizer_config = dict(grad_clip=dict(max_norm=0.1, norm_type=2))
# learning policy
lr_config = dict(
policy='step',
warmup='linear',
warmup_iters=500,
warmup_ratio=0.001,
step=[8, 11])
total_epochs = 12