-
Notifications
You must be signed in to change notification settings - Fork 38
/
hornet.py
364 lines (311 loc) · 12.6 KB
/
hornet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
from functools import partial
import torch
import torch.nn as nn
import torch.nn.functional as F
from timm.models.layers import trunc_normal_, DropPath
from timm.models.registry import register_model
import torch.fft
def get_dwconv(dim, kernel, bias):
return nn.Conv2d(dim, dim, kernel_size=kernel, padding=(kernel-1)//2 ,bias=bias, groups=dim)
class GlobalLocalFilter(nn.Module):
def __init__(self, dim, h=14, w=8):
super().__init__()
self.dw = nn.Conv2d(dim // 2, dim // 2, kernel_size=3, padding=1, bias=False, groups=dim // 2)
self.complex_weight = nn.Parameter(torch.randn(dim // 2, h, w, 2, dtype=torch.float32) * 0.02)
trunc_normal_(self.complex_weight, std=.02)
self.pre_norm = LayerNorm(dim, eps=1e-6, data_format='channels_first')
self.post_norm = LayerNorm(dim, eps=1e-6, data_format='channels_first')
def forward(self, x):
x = self.pre_norm(x)
x1, x2 = torch.chunk(x, 2, dim=1)
x1 = self.dw(x1)
x2 = x2.to(torch.float32)
B, C, a, b = x2.shape
x2 = torch.fft.rfft2(x2, dim=(2, 3), norm='ortho')
weight = self.complex_weight
if not weight.shape[1:3] == x2.shape[2:4]:
weight = F.interpolate(weight.permute(3,0,1,2), size=x2.shape[2:4], mode='bilinear', align_corners=True).permute(1,2,3,0)
weight = torch.view_as_complex(weight.contiguous())
x2 = x2 * weight
x2 = torch.fft.irfft2(x2, s=(a, b), dim=(2, 3), norm='ortho')
x = torch.cat([x1.unsqueeze(2), x2.unsqueeze(2)], dim=2).reshape(B, 2 * C, a, b)
x = self.post_norm(x)
return x
class gnconv(nn.Module):
def __init__(self, dim, order=5, gflayer=None, h=14, w=8, s=1.0):
super().__init__()
self.order = order
self.dims = [dim // 2 ** i for i in range(order)]
self.dims.reverse()
self.proj_in = nn.Conv2d(dim, 2*dim, 1)
if gflayer is None:
self.dwconv = get_dwconv(sum(self.dims), 7, True)
else:
self.dwconv = gflayer(sum(self.dims), h=h, w=w)
self.proj_out = nn.Conv2d(dim, dim, 1)
self.pws = nn.ModuleList(
[nn.Conv2d(self.dims[i], self.dims[i+1], 1) for i in range(order-1)]
)
self.scale = s
print('[gnconv]', order, 'order with dims=', self.dims, 'scale=%.4f'%self.scale)
def forward(self, x, mask=None, dummy=False):
B, C, H, W = x.shape
fused_x = self.proj_in(x)
pwa, abc = torch.split(fused_x, (self.dims[0], sum(self.dims)), dim=1)
dw_abc = self.dwconv(abc) * self.scale
dw_list = torch.split(dw_abc, self.dims, dim=1)
x = pwa * dw_list[0]
for i in range(self.order -1):
x = self.pws[i](x) * dw_list[i+1]
x = self.proj_out(x)
return x
class Block(nn.Module):
r""" HorNet block
"""
def __init__(self, dim, drop_path=0., layer_scale_init_value=1e-6, gnconv=gnconv):
super().__init__()
self.norm1 = LayerNorm(dim, eps=1e-6, data_format='channels_first')
self.gnconv = gnconv(dim) # depthwise conv
self.norm2 = LayerNorm(dim, eps=1e-6)
self.pwconv1 = nn.Linear(dim, 4 * dim) # pointwise/1x1 convs, implemented with linear layers
self.act = nn.GELU()
self.pwconv2 = nn.Linear(4 * dim, dim)
self.gamma1 = nn.Parameter(layer_scale_init_value * torch.ones(dim),
requires_grad=True) if layer_scale_init_value > 0 else None
self.gamma2 = nn.Parameter(layer_scale_init_value * torch.ones((dim)),
requires_grad=True) if layer_scale_init_value > 0 else None
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
def forward(self, x):
B, C, H, W = x.shape
if self.gamma1 is not None:
gamma1 = self.gamma1.view(C, 1, 1)
else:
gamma1 = 1
x = x + self.drop_path(gamma1 * self.gnconv(self.norm1(x)))
input = x
x = x.permute(0, 2, 3, 1) # (N, C, H, W) -> (N, H, W, C)
x = self.norm2(x)
x = self.pwconv1(x)
x = self.act(x)
x = self.pwconv2(x)
if self.gamma2 is not None:
x = self.gamma2 * x
x = x.permute(0, 3, 1, 2) # (N, H, W, C) -> (N, C, H, W)
x = input + self.drop_path(x)
return x
class HorNet(nn.Module):
def __init__(self, in_chans=3, num_classes=1000,
depths=[3, 3, 9, 3], base_dim=96, drop_path_rate=0.,
layer_scale_init_value=1e-6, head_init_scale=1.,
gnconv=gnconv, block=Block, uniform_init=False, **kwargs
):
super().__init__()
dims = [base_dim, base_dim*2, base_dim*4, base_dim*8]
self.downsample_layers = nn.ModuleList() # stem and 3 intermediate downsampling conv layers
stem = nn.Sequential(
nn.Conv2d(in_chans, dims[0], kernel_size=4, stride=4),
LayerNorm(dims[0], eps=1e-6, data_format="channels_first")
)
self.downsample_layers.append(stem)
for i in range(3):
downsample_layer = nn.Sequential(
LayerNorm(dims[i], eps=1e-6, data_format="channels_first"),
nn.Conv2d(dims[i], dims[i+1], kernel_size=2, stride=2),
)
self.downsample_layers.append(downsample_layer)
self.stages = nn.ModuleList() # 4 feature resolution stages, each consisting of multiple residual blocks
dp_rates=[x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))]
if not isinstance(gnconv, list):
gnconv = [gnconv, gnconv, gnconv, gnconv]
else:
gnconv = gnconv
assert len(gnconv) == 4
cur = 0
for i in range(4):
stage = nn.Sequential(
*[block(dim=dims[i], drop_path=dp_rates[cur + j],
layer_scale_init_value=layer_scale_init_value, gnconv=gnconv[i]) for j in range(depths[i])]
)
self.stages.append(stage)
cur += depths[i]
self.norm = nn.LayerNorm(dims[-1], eps=1e-6) # final norm layer
self.head = nn.Linear(dims[-1], num_classes)
self.uniform_init = uniform_init
self.apply(self._init_weights)
self.head.weight.data.mul_(head_init_scale)
self.head.bias.data.mul_(head_init_scale)
def _init_weights(self, m):
if not self.uniform_init:
if isinstance(m, (nn.Conv2d, nn.Linear)):
trunc_normal_(m.weight, std=.02)
if hasattr(m, 'bias') and m.bias is not None:
nn.init.constant_(m.bias, 0)
else:
if isinstance(m, (nn.Conv2d, nn.Linear)):
nn.init.xavier_uniform_(m.weight)
if hasattr(m, 'bias') and m.bias is not None:
nn.init.constant_(m.bias, 0)
def forward_features(self, x):
for i in range(4):
x = self.downsample_layers[i](x)
for j, blk in enumerate(self.stages[i]):
x = blk(x)
return self.norm(x.mean([-2, -1])) # global average pooling, (N, C, H, W) -> (N, C)
def forward(self, x):
x = self.forward_features(x)
x = self.head(x)
return x
class LayerNorm(nn.Module):
r""" LayerNorm that supports two data formats: channels_last (default) or channels_first.
The ordering of the dimensions in the inputs. channels_last corresponds to inputs with
shape (batch_size, height, width, channels) while channels_first corresponds to inputs
with shape (batch_size, channels, height, width).
"""
def __init__(self, normalized_shape, eps=1e-6, data_format="channels_last"):
super().__init__()
self.weight = nn.Parameter(torch.ones(normalized_shape))
self.bias = nn.Parameter(torch.zeros(normalized_shape))
self.eps = eps
self.data_format = data_format
if self.data_format not in ["channels_last", "channels_first"]:
raise NotImplementedError
self.normalized_shape = (normalized_shape, )
def forward(self, x):
if self.data_format == "channels_last":
return F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps)
elif self.data_format == "channels_first":
u = x.mean(1, keepdim=True)
s = (x - u).pow(2).mean(1, keepdim=True)
x = (x - u) / torch.sqrt(s + self.eps)
x = self.weight[:, None, None] * x + self.bias[:, None, None]
return x
@register_model
def hornet_tiny_7x7(pretrained=False,in_22k=False, **kwargs):
s = 1.0/3.0
model = HorNet(depths=[2, 3, 18, 2], base_dim=64, block=Block,
gnconv=[
partial(gnconv, order=2, s=s),
partial(gnconv, order=3, s=s),
partial(gnconv, order=4, s=s),
partial(gnconv, order=5, s=s),
],
**kwargs
)
return model
@register_model
def hornet_tiny_gf(pretrained=False,in_22k=False, **kwargs):
s = 1.0/3.0
model = HorNet(depths=[2, 3, 18, 2], base_dim=64, block=Block,
gnconv=[
partial(gnconv, order=2, s=s),
partial(gnconv, order=3, s=s),
partial(gnconv, order=4, s=s, h=14, w=8, gflayer=GlobalLocalFilter),
partial(gnconv, order=5, s=s, h=7, w=4, gflayer=GlobalLocalFilter),
],
**kwargs
)
return model
@register_model
def hornet_small_7x7(pretrained=False,in_22k=False, **kwargs):
s = 1.0/3.0
model = HorNet(depths=[2, 3, 18, 2], base_dim=96, block=Block,
gnconv=[
partial(gnconv, order=2, s=s),
partial(gnconv, order=3, s=s),
partial(gnconv, order=4, s=s),
partial(gnconv, order=5, s=s),
],
**kwargs
)
return model
@register_model
def hornet_small_gf(pretrained=False,in_22k=False, **kwargs):
s = 1.0/3.0
model = HorNet(depths=[2, 3, 18, 2], base_dim=96, block=Block,
gnconv=[
partial(gnconv, order=2, s=s),
partial(gnconv, order=3, s=s),
partial(gnconv, order=4, s=s, h=14, w=8, gflayer=GlobalLocalFilter),
partial(gnconv, order=5, s=s, h=7, w=4, gflayer=GlobalLocalFilter),
],
**kwargs
)
return model
@register_model
def hornet_base_7x7(pretrained=False,in_22k=False, **kwargs):
s = 1.0/3.0
model = HorNet(depths=[2, 3, 18, 2], base_dim=128, block=Block,
gnconv=[
partial(gnconv, order=2, s=s),
partial(gnconv, order=3, s=s),
partial(gnconv, order=4, s=s),
partial(gnconv, order=5, s=s),
],
**kwargs
)
return model
@register_model
def hornet_base_gf(pretrained=False,in_22k=False, **kwargs):
s = 1.0/3.0
model = HorNet(depths=[2, 3, 18, 2], base_dim=128, block=Block,
gnconv=[
partial(gnconv, order=2, s=s),
partial(gnconv, order=3, s=s),
partial(gnconv, order=4, s=s, h=14, w=8, gflayer=GlobalLocalFilter),
partial(gnconv, order=5, s=s, h=7, w=4, gflayer=GlobalLocalFilter),
],
**kwargs
)
return model
@register_model
def hornet_base_gf_img384(pretrained=False,in_22k=False, **kwargs):
s = 1.0/3.0
model = HorNet(depths=[2, 3, 18, 2], base_dim=128, block=Block,
gnconv=[
partial(gnconv, order=2, s=s),
partial(gnconv, order=3, s=s),
partial(gnconv, order=4, s=s, h=24, w=13, gflayer=GlobalLocalFilter),
partial(gnconv, order=5, s=s, h=12, w=7, gflayer=GlobalLocalFilter),
],
**kwargs
)
return model
@register_model
def hornet_large_7x7(pretrained=False,in_22k=False, **kwargs):
s = 1.0/3.0
model = HorNet(depths=[2, 3, 18, 2], base_dim=192, block=Block,
gnconv=[
partial(gnconv, order=2, s=s),
partial(gnconv, order=3, s=s),
partial(gnconv, order=4, s=s),
partial(gnconv, order=5, s=s),
],
**kwargs
)
return model
@register_model
def hornet_large_gf(pretrained=False,in_22k=False, **kwargs):
s = 1.0/3.0
model = HorNet(depths=[2, 3, 18, 2], base_dim=192, block=Block,
gnconv=[
partial(gnconv, order=2, s=s),
partial(gnconv, order=3, s=s),
partial(gnconv, order=4, s=s, h=14, w=8, gflayer=GlobalLocalFilter),
partial(gnconv, order=5, s=s, h=7, w=4, gflayer=GlobalLocalFilter),
],
**kwargs
)
return model
@register_model
def hornet_large_gf_img384(pretrained=False,in_22k=False, **kwargs):
s = 1.0/3.0
model = HorNet(depths=[2, 3, 18, 2], base_dim=192, block=Block,
gnconv=[
partial(gnconv, order=2, s=s),
partial(gnconv, order=3, s=s),
partial(gnconv, order=4, s=s, h=24, w=13, gflayer=GlobalLocalFilter),
partial(gnconv, order=5, s=s, h=12, w=7, gflayer=GlobalLocalFilter),
],
**kwargs
)
return model