Skip to content

Latest commit

 

History

History
43 lines (32 loc) · 3.11 KB

README.md

File metadata and controls

43 lines (32 loc) · 3.11 KB

COCO Object detection with HorNet

Getting started

Please refer to README.md for installation and dataset preparation instructions.

Results and Fine-tuned Models

name Pretrained Model Method Lr Schd box mAP mask mAP #params FLOPs Fine-tuned Model
HorNet-T (7x7) Tsinghua Cloud Cascade Mask R-CNN 3x 51.7 44.8 80M 730G Tsinghua Cloud
HorNet-T (GF) Tsinghua Cloud Cascade Mask R-CNN 3x 52.4 45.6 80M 728G Tsinghua Cloud
HorNet-S (7x7) Tsinghua Cloud Cascade Mask R-CNN 3x 52.7 45.6 107M 830G Tsinghua Cloud
HorNet-S (GF) Tsinghua Cloud Cascade Mask R-CNN 3x 53.3 46.3 108M 827G Tsinghua Cloud
HorNet-B (7x7) Tsinghua Cloud Cascade Mask R-CNN 3x 53.3 46.1 144M 969G Tsinghua Cloud
HorNet-B (GF) Tsinghua Cloud Cascade Mask R-CNN 3x 54.0 46.9 146M 965G Tsinghua Cloud
HorNet-L (7x7) Tsinghua Cloud Cascade Mask R-CNN 3x 55.4 48.0 251M 1363G Tsinghua Cloud
HorNet-L (GF) Tsinghua Cloud Cascade Mask R-CNN 3x 56.0 48.6 259M 1358G Tsinghua Cloud

Training

To train a detector with pre-trained models, run:

# multi-gpu training
bash dist_train.sh <CONFIG_FILE> <GPU_NUM> --cfg-options model.pretrained=<PRETRAIN_MODEL> [other optional arguments] 

For example, to train a Cascade Mask R-CNN model with a HorNet-T (GF) backbone and 8 gpus, run:

bash dist_train.sh configs/hornet/cascade_mask_rcnn_hornet_tiny_gf_3x_coco_in1k.py 8 --cfg-options model.pretrained=/path/to/pretrained

More config files can be found at configs/hornet.

Inference

# multi-gpu testing
bash dist_test.sh <CONFIG_FILE> <DET_CHECKPOINT_FILE> <GPU_NUM> --eval bbox segm

Acknowledgment

This code is built using mmdetection, timm libraries, and ConvNeXt