-
Notifications
You must be signed in to change notification settings - Fork 18
/
neural.py
238 lines (198 loc) · 7.91 KB
/
neural.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
import math
import torch
import torch.nn as nn
def gelu(x):
return 0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))
class PositionwiseFeedForward(nn.Module):
""" A two-layer Feed-Forward-Network with residual layer norm.
Args:
d_model (int): the size of input for the first-layer of the FFN.
d_ff (int): the hidden layer size of the second-layer
of the FNN.
dropout (float): dropout probability in :math:`[0, 1)`.
"""
def __init__(self, d_model, d_ff, dropout=0.1):
super(PositionwiseFeedForward, self).__init__()
self.w_1 = nn.Linear(d_model, d_ff)
self.w_2 = nn.Linear(d_ff, d_model)
self.layer_norm = nn.LayerNorm(d_model, eps=1e-6)
self.actv = gelu
self.dropout_1 = nn.Dropout(dropout)
self.dropout_2 = nn.Dropout(dropout)
def forward(self, x):
inter = self.dropout_1(self.actv(self.w_1(self.layer_norm(x))))
output = self.dropout_2(self.w_2(inter))
return output + x
class MultiHeadedAttention(nn.Module):
"""
Multi-Head Attention module from
"Attention is All You Need"
:cite:`DBLP:journals/corr/VaswaniSPUJGKP17`.
Similar to standard `dot` attention but uses
multiple attention distributions simulataneously
to select relevant items.
.. mermaid::
graph BT
A[key]
B[value]
C[query]
O[output]
subgraph Attn
D[Attn 1]
E[Attn 2]
F[Attn N]
end
A --> D
C --> D
A --> E
C --> E
A --> F
C --> F
D --> O
E --> O
F --> O
B --> O
Also includes several additional tricks.
Args:
head_count (int): number of parallel heads
model_dim (int): the dimension of keys/values/queries,
must be divisible by head_count
dropout (float): dropout parameter
"""
def __init__(self, head_count, model_dim, dropout=0.1, use_final_linear=True):
assert model_dim % head_count == 0
self.dim_per_head = model_dim // head_count
self.model_dim = model_dim
super(MultiHeadedAttention, self).__init__()
self.head_count = head_count
self.linear_keys = nn.Linear(model_dim,
head_count * self.dim_per_head)
self.linear_values = nn.Linear(model_dim,
head_count * self.dim_per_head)
self.linear_query = nn.Linear(model_dim,
head_count * self.dim_per_head)
self.softmax = nn.Softmax(dim=-1)
self.dropout = nn.Dropout(dropout)
self.use_final_linear = use_final_linear
if (self.use_final_linear):
self.final_linear = nn.Linear(model_dim, model_dim)
def forward(self, key, value, query, mask=None,
layer_cache=None, type=None, predefined_graph_1=None):
"""
Compute the context vector and the attention vectors.
Args:
key (`FloatTensor`): set of `key_len`
key vectors `[batch, key_len, dim]`
value (`FloatTensor`): set of `key_len`
value vectors `[batch, key_len, dim]`
query (`FloatTensor`): set of `query_len`
query vectors `[batch, query_len, dim]`
mask: binary mask indicating which keys have
non-zero attention `[batch, query_len, key_len]`
Returns:
(`FloatTensor`, `FloatTensor`) :
* output context vectors `[batch, query_len, dim]`
* one of the attention vectors `[batch, query_len, key_len]`
"""
# CHECKS
# batch, k_len, d = key.size()
# batch_, k_len_, d_ = value.size()
# aeq(batch, batch_)
# aeq(k_len, k_len_)
# aeq(d, d_)
# batch_, q_len, d_ = query.size()
# aeq(batch, batch_)
# aeq(d, d_)
# aeq(self.model_dim % 8, 0)
# if mask is not None:
# batch_, q_len_, k_len_ = mask.size()
# aeq(batch_, batch)
# aeq(k_len_, k_len)
# aeq(q_len_ == q_len)
# END CHECKS
batch_size = key.size(0)
dim_per_head = self.dim_per_head
head_count = self.head_count
key_len = key.size(1)
query_len = query.size(1)
def shape(x):
""" projection """
return x.view(batch_size, -1, head_count, dim_per_head) \
.transpose(1, 2)
def unshape(x):
""" compute context """
return x.transpose(1, 2).contiguous() \
.view(batch_size, -1, head_count * dim_per_head)
# 1) Project key, value, and query.
if layer_cache is not None:
if type == "self":
query, key, value = self.linear_query(query), \
self.linear_keys(query), \
self.linear_values(query)
key = shape(key)
value = shape(value)
if layer_cache is not None:
device = key.device
if layer_cache["self_keys"] is not None:
key = torch.cat(
(layer_cache["self_keys"].to(device), key),
dim=2)
if layer_cache["self_values"] is not None:
value = torch.cat(
(layer_cache["self_values"].to(device), value),
dim=2)
layer_cache["self_keys"] = key
layer_cache["self_values"] = value
elif type == "context":
query = self.linear_query(query)
if layer_cache is not None:
if layer_cache["memory_keys"] is None:
key, value = self.linear_keys(key), \
self.linear_values(value)
key = shape(key)
value = shape(value)
else:
key, value = layer_cache["memory_keys"], \
layer_cache["memory_values"]
layer_cache["memory_keys"] = key
layer_cache["memory_values"] = value
else:
key, value = self.linear_keys(key), \
self.linear_values(value)
key = shape(key)
value = shape(value)
else:
key = self.linear_keys(key)
value = self.linear_values(value)
query = self.linear_query(query)
key = shape(key)
value = shape(value)
query = shape(query)
key_len = key.size(2)
query_len = query.size(2)
# 2) Calculate and scale scores.
query = query / math.sqrt(dim_per_head)
scores = torch.matmul(query, key.transpose(2, 3))
if mask is not None:
mask = mask.unsqueeze(1).expand_as(scores)
scores = scores.masked_fill(mask, -1e18)
# 3) Apply attention dropout and compute context vectors.
attn = self.softmax(scores)
if (not predefined_graph_1 is None):
attn_masked = attn[:, -1] * predefined_graph_1
attn_masked = attn_masked / (torch.sum(attn_masked, 2).unsqueeze(2) + 1e-9)
attn = torch.cat([attn[:, :-1], attn_masked.unsqueeze(1)], 1)
drop_attn = self.dropout(attn)
if (self.use_final_linear):
context = unshape(torch.matmul(drop_attn, value))
output = self.final_linear(context)
return output
else:
context = torch.matmul(drop_attn, value)
return context
# CHECK
# batch_, q_len_, d_ = output.size()
# aeq(q_len, q_len_)
# aeq(batch, batch_)
# aeq(d, d_)
# Return one attn