-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathq_net.py
171 lines (141 loc) · 6.63 KB
/
q_net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
# -*- coding: utf-8 -*-
import copy
import numpy as np
from chainer import cuda, FunctionSet, Variable, optimizers
import chainer.functions as F
class QNet:
# Hyper-Parameters
gamma = 0.99 # Discount factor
initial_exploration = 10**3 # Initial exploratoin. original: 5x10^4
replay_size = 32 # Replay (batch) size
target_model_update_freq = 10**4 # Target update frequancy. original: 10^4
data_size = 10**5 # Data size of history. original: 10^6
hist_size = 1 #original: 4
def __init__(self, use_gpu, enable_controller, dim):
self.use_gpu = use_gpu
self.num_of_actions = len(enable_controller)
self.enable_controller = enable_controller
self.dim = dim
print("Initializing Q-Network...")
hidden_dim = 256
self.model = FunctionSet(
l4=F.Linear(self.dim*self.hist_size, hidden_dim, wscale=np.sqrt(2)),
q_value=F.Linear(hidden_dim, self.num_of_actions,
initialW=np.zeros((self.num_of_actions, hidden_dim),
dtype=np.float32))
)
if self.use_gpu >= 0:
self.model.to_gpu()
self.model_target = copy.deepcopy(self.model)
self.optimizer = optimizers.RMSpropGraves(lr=0.00025, alpha=0.95, momentum=0.95, eps=0.0001)
self.optimizer.setup(self.model.collect_parameters())
# History Data : D=[s, a, r, s_dash, end_episode_flag]
self.d = [np.zeros((self.data_size, self.hist_size, self.dim), dtype=np.uint8),
np.zeros(self.data_size, dtype=np.uint8),
np.zeros((self.data_size, 1), dtype=np.int8),
np.zeros((self.data_size, self.hist_size, self.dim), dtype=np.uint8),
np.zeros((self.data_size, 1), dtype=np.bool)]
def forward(self, state, action, reward, state_dash, episode_end):
num_of_batch = state.shape[0]
s = Variable(state)
s_dash = Variable(state_dash)
q = self.q_func(s) # Get Q-value
# Generate Target Signals
tmp = self.q_func_target(s_dash) # Q(s',*)
if self.use_gpu >= 0:
tmp = list(map(np.max, tmp.data.get())) # max_a Q(s',a)
else:
tmp = list(map(np.max, tmp.data)) # max_a Q(s',a)
max_q_dash = np.asanyarray(tmp, dtype=np.float32)
if self.use_gpu >= 0:
target = np.asanyarray(q.data.get(), dtype=np.float32)
else:
# make new array
target = np.array(q.data, dtype=np.float32)
for i in xrange(num_of_batch):
if not episode_end[i][0]:
tmp_ = reward[i] + self.gamma * max_q_dash[i]
else:
tmp_ = reward[i]
action_index = self.action_to_index(action[i])
target[i, action_index] = tmp_
# TD-error clipping
if self.use_gpu >= 0:
target = cuda.to_gpu(target)
td = Variable(target) - q # TD error
td_tmp = td.data + 1000.0 * (abs(td.data) <= 1) # Avoid zero division
td_clip = td * (abs(td.data) <= 1) + td/abs(td_tmp) * (abs(td.data) > 1)
zero_val = np.zeros((self.replay_size, self.num_of_actions), dtype=np.float32)
if self.use_gpu >= 0:
zero_val = cuda.to_gpu(zero_val)
zero_val = Variable(zero_val)
loss = F.mean_squared_error(td_clip, zero_val)
return loss, q
def stock_experience(self, time,
state, action, reward, state_dash,
episode_end_flag):
data_index = time % self.data_size
if episode_end_flag is True:
self.d[0][data_index] = state
self.d[1][data_index] = action
self.d[2][data_index] = reward
else:
self.d[0][data_index] = state
self.d[1][data_index] = action
self.d[2][data_index] = reward
self.d[3][data_index] = state_dash
self.d[4][data_index] = episode_end_flag
def experience_replay(self, time):
if self.initial_exploration < time:
# Pick up replay_size number of samples from the Data
if time < self.data_size: # during the first sweep of the History Data
replay_index = np.random.randint(0, time, (self.replay_size, 1))
else:
replay_index = np.random.randint(0, self.data_size, (self.replay_size, 1))
s_replay = np.ndarray(shape=(self.replay_size, self.hist_size, self.dim), dtype=np.float32)
a_replay = np.ndarray(shape=(self.replay_size, 1), dtype=np.uint8)
r_replay = np.ndarray(shape=(self.replay_size, 1), dtype=np.float32)
s_dash_replay = np.ndarray(shape=(self.replay_size, self.hist_size, self.dim), dtype=np.float32)
episode_end_replay = np.ndarray(shape=(self.replay_size, 1), dtype=np.bool)
for i in xrange(self.replay_size):
s_replay[i] = np.asarray(self.d[0][replay_index[i]], dtype=np.float32)
a_replay[i] = self.d[1][replay_index[i]]
r_replay[i] = self.d[2][replay_index[i]]
s_dash_replay[i] = np.array(self.d[3][replay_index[i]], dtype=np.float32)
episode_end_replay[i] = self.d[4][replay_index[i]]
if self.use_gpu >= 0:
s_replay = cuda.to_gpu(s_replay)
s_dash_replay = cuda.to_gpu(s_dash_replay)
# Gradient-based update
self.optimizer.zero_grads()
loss, _ = self.forward(s_replay, a_replay, r_replay, s_dash_replay, episode_end_replay)
loss.backward()
self.optimizer.update()
def q_func(self, state):
h4 = F.relu(self.model.l4(state))
q = self.model.q_value(h4 / 255.0)
return q
def q_func_target(self, state):
h4 = F.relu(self.model_target.l4(state / 255.0))
q = self.model_target.q_value(h4)
return q
def e_greedy(self, state, epsilon):
s = Variable(state)
q = self.q_func(s)
q = q.data
if np.random.rand() < epsilon:
index_action = np.random.randint(0, self.num_of_actions)
print(" Random"),
else:
if self.use_gpu >= 0:
index_action = np.argmax(q.get())
else:
index_action = np.argmax(q)
print("#Greedy"),
return self.index_to_action(index_action), q
def target_model_update(self):
self.model_target = copy.deepcopy(self.model)
def index_to_action(self, index_of_action):
return self.enable_controller[index_of_action]
def action_to_index(self, action):
return self.enable_controller.index(action)