forked from blender/blender-addons
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathadd_curve_ivygen.py
795 lines (656 loc) · 27.1 KB
/
add_curve_ivygen.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
# ##### BEGIN GPL LICENSE BLOCK #####
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
#
# ##### END GPL LICENSE BLOCK #####
# <pep8-80 compliant>
bl_info = {
"name": "IvyGen",
"author": "testscreenings, PKHG, TrumanBlending",
"version": (0, 1, 5),
"blender": (2, 80, 0),
"location": "View3D > Sidebar > Ivy Generator (Create Tab)",
"description": "Adds generated ivy to a mesh object starting "
"at the 3D cursor",
"warning": "",
"doc_url": "{BLENDER_MANUAL_URL}/addons/add_curve/ivy_gen.html",
"category": "Add Curve",
}
import bpy
from bpy.types import (
Operator,
Panel,
PropertyGroup,
)
from bpy.props import (
BoolProperty,
FloatProperty,
IntProperty,
PointerProperty,
)
from mathutils.bvhtree import BVHTree
from mathutils import (
Vector,
Matrix,
)
from collections import deque
from math import (
pow, cos,
pi, atan2,
)
from random import (
random as rand_val,
seed as rand_seed,
)
import time
def createIvyGeometry(IVY, growLeaves):
"""Create the curve geometry for IVY"""
# Compute the local size and the gauss weight filter
# local_ivyBranchSize = IVY.ivyBranchSize # * radius * IVY.ivySize
gaussWeight = (1.0, 2.0, 4.0, 7.0, 9.0, 10.0, 9.0, 7.0, 4.0, 2.0, 1.0)
# Create a new curve and initialise it
curve = bpy.data.curves.new("IVY", type='CURVE')
curve.dimensions = '3D'
curve.bevel_depth = 1
curve.fill_mode = 'FULL'
curve.resolution_u = 4
if growLeaves:
# Create the ivy leaves
# Order location of the vertices
signList = ((-1.0, +1.0),
(+1.0, +1.0),
(+1.0, -1.0),
(-1.0, -1.0),
)
# Get the local size
# local_ivyLeafSize = IVY.ivyLeafSize # * radius * IVY.ivySize
# Initialise the vertex and face lists
vertList = deque()
# Store the methods for faster calling
addV = vertList.extend
rotMat = Matrix.Rotation
# Loop over all roots to generate its nodes
for root in IVY.ivyRoots:
# Only grow if more than one node
numNodes = len(root.ivyNodes)
if numNodes > 1:
# Calculate the local radius
local_ivyBranchRadius = 1.0 / (root.parents + 1) + 1.0
prevIvyLength = 1.0 / root.ivyNodes[-1].length
splineVerts = [ax for n in root.ivyNodes for ax in n.pos.to_4d()]
radiusConstant = local_ivyBranchRadius * IVY.ivyBranchSize
splineRadii = [radiusConstant * (1.3 - n.length * prevIvyLength)
for n in root.ivyNodes]
# Add the poly curve and set coords and radii
newSpline = curve.splines.new(type='POLY')
newSpline.points.add(len(splineVerts) // 4 - 1)
newSpline.points.foreach_set('co', splineVerts)
newSpline.points.foreach_set('radius', splineRadii)
# Loop over all nodes in the root
for i, n in enumerate(root.ivyNodes):
for k in range(len(gaussWeight)):
idx = max(0, min(i + k - 5, numNodes - 1))
n.smoothAdhesionVector += (gaussWeight[k] *
root.ivyNodes[idx].adhesionVector)
n.smoothAdhesionVector /= 56.0
n.adhesionLength = n.smoothAdhesionVector.length
n.smoothAdhesionVector.normalize()
if growLeaves and (i < numNodes - 1):
node = root.ivyNodes[i]
nodeNext = root.ivyNodes[i + 1]
# Find the weight and normalize the smooth adhesion vector
weight = pow(node.length * prevIvyLength, 0.7)
# Calculate the ground ivy and the new weight
groundIvy = max(0.0, -node.smoothAdhesionVector.z)
weight += groundIvy * pow(1 - node.length *
prevIvyLength, 2)
# Find the alignment weight
alignmentWeight = node.adhesionLength
# Calculate the needed angles
phi = atan2(node.smoothAdhesionVector.y,
node.smoothAdhesionVector.x) - pi / 2.0
theta = (0.5 *
node.smoothAdhesionVector.angle(Vector((0, 0, -1)), 0))
# Find the size weight
sizeWeight = 1.5 - (cos(2 * pi * weight) * 0.5 + 0.5)
# Randomise the angles
phi += (rand_val() - 0.5) * (1.3 - alignmentWeight)
theta += (rand_val() - 0.5) * (1.1 - alignmentWeight)
# Calculate the leaf size an append the face to the list
leafSize = IVY.ivyLeafSize * sizeWeight
for j in range(10):
# Generate the probability
probability = rand_val()
# If we need to grow a leaf, do so
if (probability * weight) > IVY.leafProbability:
# Generate the random vector
randomVector = Vector((rand_val() - 0.5,
rand_val() - 0.5,
rand_val() - 0.5,
))
# Find the leaf center
center = (node.pos.lerp(nodeNext.pos, j / 10.0) +
IVY.ivyLeafSize * randomVector)
# For each of the verts, rotate/scale and append
basisVecX = Vector((1, 0, 0))
basisVecY = Vector((0, 1, 0))
horiRot = rotMat(theta, 3, 'X')
vertRot = rotMat(phi, 3, 'Z')
basisVecX.rotate(horiRot)
basisVecY.rotate(horiRot)
basisVecX.rotate(vertRot)
basisVecY.rotate(vertRot)
basisVecX *= leafSize
basisVecY *= leafSize
addV([k1 * basisVecX + k2 * basisVecY + center for
k1, k2 in signList])
# Add the object and link to scene
newCurve = bpy.data.objects.new("IVY_Curve", curve)
bpy.context.collection.objects.link(newCurve)
if growLeaves:
faceList = [[4 * i + l for l in range(4)] for i in
range(len(vertList) // 4)]
# Generate the new leaf mesh and link
me = bpy.data.meshes.new('IvyLeaf')
me.from_pydata(vertList, [], faceList)
me.update(calc_edges=True)
ob = bpy.data.objects.new('IvyLeaf', me)
bpy.context.collection.objects.link(ob)
me.uv_layers.new(name="Leaves")
# Set the uv texture coords
# TODO, this is non-functional, default uvs are ok?
'''
for d in tex.data:
uv1, uv2, uv3, uv4 = signList
'''
ob.parent = newCurve
class IvyNode:
""" The basic class used for each point on the ivy which is grown."""
__slots__ = ('pos', 'primaryDir', 'adhesionVector', 'adhesionLength',
'smoothAdhesionVector', 'length', 'floatingLength', 'climb')
def __init__(self):
self.pos = Vector((0, 0, 0))
self.primaryDir = Vector((0, 0, 1))
self.adhesionVector = Vector((0, 0, 0))
self.smoothAdhesionVector = Vector((0, 0, 0))
self.length = 0.0001
self.floatingLength = 0.0
self.climb = True
class IvyRoot:
""" The class used to hold all ivy nodes growing from this root point."""
__slots__ = ('ivyNodes', 'alive', 'parents')
def __init__(self):
self.ivyNodes = deque()
self.alive = True
self.parents = 0
class Ivy:
""" The class holding all parameters and ivy roots."""
__slots__ = ('ivyRoots', 'primaryWeight', 'randomWeight',
'gravityWeight', 'adhesionWeight', 'branchingProbability',
'leafProbability', 'ivySize', 'ivyLeafSize', 'ivyBranchSize',
'maxFloatLength', 'maxAdhesionDistance', 'maxLength')
def __init__(self,
primaryWeight=0.5,
randomWeight=0.2,
gravityWeight=1.0,
adhesionWeight=0.1,
branchingProbability=0.05,
leafProbability=0.35,
ivySize=0.02,
ivyLeafSize=0.02,
ivyBranchSize=0.001,
maxFloatLength=0.5,
maxAdhesionDistance=1.0):
self.ivyRoots = deque()
self.primaryWeight = primaryWeight
self.randomWeight = randomWeight
self.gravityWeight = gravityWeight
self.adhesionWeight = adhesionWeight
self.branchingProbability = 1 - branchingProbability
self.leafProbability = 1 - leafProbability
self.ivySize = ivySize
self.ivyLeafSize = ivyLeafSize
self.ivyBranchSize = ivyBranchSize
self.maxFloatLength = maxFloatLength
self.maxAdhesionDistance = maxAdhesionDistance
self.maxLength = 0.0
# Normalize all the weights only on initialisation
sums = self.primaryWeight + self.randomWeight + self.adhesionWeight
self.primaryWeight /= sums
self.randomWeight /= sums
self.adhesionWeight /= sums
def seed(self, seedPos):
# Seed the Ivy by making a new root and first node
tmpRoot = IvyRoot()
tmpIvy = IvyNode()
tmpIvy.pos = seedPos
tmpRoot.ivyNodes.append(tmpIvy)
self.ivyRoots.append(tmpRoot)
def grow(self, ob, bvhtree):
# Determine the local sizes
# local_ivySize = self.ivySize # * radius
# local_maxFloatLength = self.maxFloatLength # * radius
# local_maxAdhesionDistance = self.maxAdhesionDistance # * radius
for root in self.ivyRoots:
# Make sure the root is alive, if not, skip
if not root.alive:
continue
# Get the last node in the current root
prevIvy = root.ivyNodes[-1]
# If the node is floating for too long, kill the root
if prevIvy.floatingLength > self.maxFloatLength:
root.alive = False
# Set the primary direction from the last node
primaryVector = prevIvy.primaryDir
# Make the random vector and normalize
randomVector = Vector((rand_val() - 0.5, rand_val() - 0.5,
rand_val() - 0.5)) + Vector((0, 0, 0.2))
randomVector.normalize()
# Calculate the adhesion vector
adhesionVector = adhesion(
prevIvy.pos, bvhtree, self.maxAdhesionDistance)
# Calculate the growing vector
growVector = self.ivySize * (primaryVector * self.primaryWeight +
randomVector * self.randomWeight +
adhesionVector * self.adhesionWeight)
# Find the gravity vector
gravityVector = (self.ivySize * self.gravityWeight *
Vector((0, 0, -1)))
gravityVector *= pow(prevIvy.floatingLength / self.maxFloatLength,
0.7)
# Determine the new position vector
newPos = prevIvy.pos + growVector + gravityVector
# Check for collisions with the object
climbing, newPos = collision(bvhtree, prevIvy.pos, newPos)
# Update the growing vector for any collisions
growVector = newPos - prevIvy.pos - gravityVector
growVector.normalize()
# Create a new IvyNode and set its properties
tmpNode = IvyNode()
tmpNode.climb = climbing
tmpNode.pos = newPos
tmpNode.primaryDir = prevIvy.primaryDir.lerp(growVector, 0.5)
tmpNode.primaryDir.normalize()
tmpNode.adhesionVector = adhesionVector
tmpNode.length = prevIvy.length + (newPos - prevIvy.pos).length
if tmpNode.length > self.maxLength:
self.maxLength = tmpNode.length
# If the node isn't climbing, update it's floating length
# Otherwise set it to 0
if not climbing:
tmpNode.floatingLength = prevIvy.floatingLength + (newPos -
prevIvy.pos).length
else:
tmpNode.floatingLength = 0.0
root.ivyNodes.append(tmpNode)
# Loop through all roots to check if a new root is generated
for root in self.ivyRoots:
# Check the root is alive and isn't at high level of recursion
if (root.parents > 3) or (not root.alive):
continue
# Check to make sure there's more than 1 node
if len(root.ivyNodes) > 1:
# Loop through all nodes in root to check if new root is grown
for node in root.ivyNodes:
# Set the last node of the root and find the weighting
prevIvy = root.ivyNodes[-1]
weight = 1.0 - (cos(2.0 * pi * node.length /
prevIvy.length) * 0.5 + 0.5)
probability = rand_val()
# Check if a new root is grown and if so, set its values
if (probability * weight > self.branchingProbability):
tmpNode = IvyNode()
tmpNode.pos = node.pos
tmpNode.floatingLength = node.floatingLength
tmpRoot = IvyRoot()
tmpRoot.parents = root.parents + 1
tmpRoot.ivyNodes.append(tmpNode)
self.ivyRoots.append(tmpRoot)
return
def adhesion(loc, bvhtree, max_l):
# Compute the adhesion vector by finding the nearest point
nearest_location, *_ = bvhtree.find_nearest(loc, max_l)
adhesion_vector = Vector((0.0, 0.0, 0.0))
if nearest_location is not None:
# Compute the distance to the nearest point
adhesion_vector = nearest_location - loc
distance = adhesion_vector.length
# If it's less than the maximum allowed and not 0, continue
if distance:
# Compute the direction vector between the closest point and loc
adhesion_vector.normalize()
adhesion_vector *= 1.0 - distance / max_l
# adhesion_vector *= getFaceWeight(ob.data, nearest_result[3])
return adhesion_vector
def collision(bvhtree, pos, new_pos):
# Check for collision with the object
climbing = False
corrected_new_pos = new_pos
direction = new_pos - pos
hit_location, hit_normal, *_ = bvhtree.ray_cast(pos, direction, direction.length)
# If there's a collision we need to check it
if hit_location is not None:
# Check whether the collision is going into the object
if direction.dot(hit_normal) < 0.0:
reflected_direction = (new_pos - hit_location).reflect(hit_normal)
corrected_new_pos = hit_location + reflected_direction
climbing = True
return climbing, corrected_new_pos
def bvhtree_from_object(ob):
import bmesh
bm = bmesh.new()
depsgraph = bpy.context.evaluated_depsgraph_get()
ob_eval = ob.evaluated_get(depsgraph)
mesh = ob_eval.to_mesh()
bm.from_mesh(mesh)
bm.transform(ob.matrix_world)
bvhtree = BVHTree.FromBMesh(bm)
ob_eval.to_mesh_clear()
return bvhtree
def check_mesh_faces(ob):
me = ob.data
if len(me.polygons) > 0:
return True
return False
class IvyGen(Operator):
bl_idname = "curve.ivy_gen"
bl_label = "IvyGen"
bl_description = "Generate Ivy on an Mesh Object"
bl_options = {'REGISTER', 'UNDO'}
updateIvy: BoolProperty(
name="Update Ivy",
description="Update the Ivy location based on the cursor and Panel settings",
default=False
)
defaultIvy: BoolProperty(
name="Default Ivy",
options={"HIDDEN", "SKIP_SAVE"},
default=False
)
@classmethod
def poll(self, context):
# Check if there's an object and whether it's a mesh
ob = context.active_object
return ((ob is not None) and
(ob.type == 'MESH') and
(context.mode == 'OBJECT'))
def invoke(self, context, event):
self.updateIvy = True
return self.execute(context)
def execute(self, context):
# scene = context.scene
ivyProps = context.window_manager.ivy_gen_props
if not self.updateIvy:
return {'PASS_THROUGH'}
# assign the variables, check if it is default
# Note: update the values if window_manager props defaults are changed
randomSeed = ivyProps.randomSeed if not self.defaultIvy else 0
maxTime = ivyProps.maxTime if not self.defaultIvy else 0
maxIvyLength = ivyProps.maxIvyLength if not self.defaultIvy else 1.0
ivySize = ivyProps.ivySize if not self.defaultIvy else 0.02
maxFloatLength = ivyProps.maxFloatLength if not self.defaultIvy else 0.5
maxAdhesionDistance = ivyProps.maxAdhesionDistance if not self.defaultIvy else 1.0
primaryWeight = ivyProps.primaryWeight if not self.defaultIvy else 0.5
randomWeight = ivyProps.randomWeight if not self.defaultIvy else 0.2
gravityWeight = ivyProps.gravityWeight if not self.defaultIvy else 1.0
adhesionWeight = ivyProps.adhesionWeight if not self.defaultIvy else 0.1
branchingProbability = ivyProps.branchingProbability if not self.defaultIvy else 0.05
leafProbability = ivyProps.leafProbability if not self.defaultIvy else 0.35
ivyBranchSize = ivyProps.ivyBranchSize if not self.defaultIvy else 0.001
ivyLeafSize = ivyProps.ivyLeafSize if not self.defaultIvy else 0.02
growLeaves = ivyProps.growLeaves if not self.defaultIvy else True
bpy.ops.object.mode_set(mode='EDIT', toggle=False)
bpy.ops.object.mode_set(mode='OBJECT', toggle=False)
# Get the selected object
ob = context.active_object
bvhtree = bvhtree_from_object(ob)
# Check if the mesh has at least one polygon since some functions
# are expecting them in the object's data (see T51753)
check_face = check_mesh_faces(ob)
if check_face is False:
self.report({'WARNING'},
"Mesh Object doesn't have at least one Face. "
"Operation Cancelled")
return {"CANCELLED"}
# Compute bounding sphere radius
# radius = computeBoundingSphere(ob) # Not needed anymore
# Get the seeding point
seedPoint = context.scene.cursor.location
# Fix the random seed
rand_seed(randomSeed)
# Make the new ivy
IVY = Ivy(
primaryWeight=primaryWeight,
randomWeight=randomWeight,
gravityWeight=gravityWeight,
adhesionWeight=adhesionWeight,
branchingProbability=branchingProbability,
leafProbability=leafProbability,
ivySize=ivySize,
ivyLeafSize=ivyLeafSize,
ivyBranchSize=ivyBranchSize,
maxFloatLength=maxFloatLength,
maxAdhesionDistance=maxAdhesionDistance
)
# Generate first root and node
IVY.seed(seedPoint)
checkTime = False
maxLength = maxIvyLength # * radius
# If we need to check time set the flag
if maxTime != 0.0:
checkTime = True
t = time.time()
startPercent = 0.0
checkAliveIter = [True, ]
# Grow until 200 roots is reached or backup counter exceeds limit
while (any(checkAliveIter) and
(IVY.maxLength < maxLength) and
(not checkTime or (time.time() - t < maxTime))):
# Grow the ivy for this iteration
IVY.grow(ob, bvhtree)
# Print the proportion of ivy growth to console
if (IVY.maxLength / maxLength * 100) > 10 * startPercent // 10:
print('%0.2f%% of Ivy nodes have grown' %
(IVY.maxLength / maxLength * 100))
startPercent += 10
if IVY.maxLength / maxLength > 1:
print("Halting Growth")
# Make an iterator to check if all are alive
checkAliveIter = (r.alive for r in IVY.ivyRoots)
# Create the curve and leaf geometry
createIvyGeometry(IVY, growLeaves)
print("Geometry Generation Complete")
print("Ivy generated in %0.2f s" % (time.time() - t))
self.updateIvy = False
self.defaultIvy = False
return {'FINISHED'}
def draw(self, context):
layout = self.layout
layout.prop(self, "updateIvy", icon="FILE_REFRESH")
class CURVE_PT_IvyGenPanel(Panel):
bl_label = "Ivy Generator"
bl_idname = "CURVE_PT_IvyGenPanel"
bl_space_type = "VIEW_3D"
bl_region_type = "UI"
bl_category = "Create"
bl_context = "objectmode"
bl_options = {"DEFAULT_CLOSED"}
def draw(self, context):
layout = self.layout
wm = context.window_manager
col = layout.column(align=True)
prop_new = col.operator("curve.ivy_gen", text="Add New Ivy", icon="OUTLINER_OB_CURVE")
prop_new.defaultIvy = False
prop_new.updateIvy = True
prop_def = col.operator("curve.ivy_gen", text="Add New Default Ivy", icon="CURVE_DATA")
prop_def.defaultIvy = True
prop_def.updateIvy = True
col = layout.column(align=True)
col.label(text="Generation Settings:")
col.prop(wm.ivy_gen_props, "randomSeed")
col.prop(wm.ivy_gen_props, "maxTime")
col = layout.column(align=True)
col.label(text="Size Settings:")
col.prop(wm.ivy_gen_props, "maxIvyLength")
col.prop(wm.ivy_gen_props, "ivySize")
col.prop(wm.ivy_gen_props, "maxFloatLength")
col.prop(wm.ivy_gen_props, "maxAdhesionDistance")
col = layout.column(align=True)
col.label(text="Weight Settings:")
col.prop(wm.ivy_gen_props, "primaryWeight")
col.prop(wm.ivy_gen_props, "randomWeight")
col.prop(wm.ivy_gen_props, "gravityWeight")
col.prop(wm.ivy_gen_props, "adhesionWeight")
col = layout.column(align=True)
col.label(text="Branch Settings:")
col.prop(wm.ivy_gen_props, "branchingProbability")
col.prop(wm.ivy_gen_props, "ivyBranchSize")
col = layout.column(align=True)
col.prop(wm.ivy_gen_props, "growLeaves")
if wm.ivy_gen_props.growLeaves:
col = layout.column(align=True)
col.label(text="Leaf Settings:")
col.prop(wm.ivy_gen_props, "ivyLeafSize")
col.prop(wm.ivy_gen_props, "leafProbability")
class IvyGenProperties(PropertyGroup):
maxIvyLength: FloatProperty(
name="Max Ivy Length",
description="Maximum ivy length in Blender Units",
default=1.0,
min=0.0,
soft_max=3.0,
subtype='DISTANCE',
unit='LENGTH'
)
primaryWeight: FloatProperty(
name="Primary Weight",
description="Weighting given to the current direction",
default=0.5,
min=0.0,
soft_max=1.0
)
randomWeight: FloatProperty(
name="Random Weight",
description="Weighting given to the random direction",
default=0.2,
min=0.0,
soft_max=1.0
)
gravityWeight: FloatProperty(
name="Gravity Weight",
description="Weighting given to the gravity direction",
default=1.0,
min=0.0,
soft_max=1.0
)
adhesionWeight: FloatProperty(
name="Adhesion Weight",
description="Weighting given to the adhesion direction",
default=0.1,
min=0.0,
soft_max=1.0
)
branchingProbability: FloatProperty(
name="Branching Probability",
description="Probability of a new branch forming",
default=0.05,
min=0.0,
soft_max=1.0
)
leafProbability: FloatProperty(
name="Leaf Probability",
description="Probability of a leaf forming",
default=0.35,
min=0.0,
soft_max=1.0
)
ivySize: FloatProperty(
name="Ivy Size",
description="The length of an ivy segment in Blender"
" Units",
default=0.02,
min=0.0,
soft_max=1.0,
precision=3
)
ivyLeafSize: FloatProperty(
name="Ivy Leaf Size",
description="The size of the ivy leaves",
default=0.02,
min=0.0,
soft_max=0.5,
precision=3
)
ivyBranchSize: FloatProperty(
name="Ivy Branch Size",
description="The size of the ivy branches",
default=0.001,
min=0.0,
soft_max=0.1,
precision=4
)
maxFloatLength: FloatProperty(
name="Max Float Length",
description="The maximum distance that a branch "
"can live while floating",
default=0.5,
min=0.0,
soft_max=1.0
)
maxAdhesionDistance: FloatProperty(
name="Max Adhesion Length",
description="The maximum distance that a branch "
"will feel the effects of adhesion",
default=1.0,
min=0.0,
soft_max=2.0,
precision=2
)
randomSeed: IntProperty(
name="Random Seed",
description="The seed governing random generation",
default=0,
min=0
)
maxTime: FloatProperty(
name="Maximum Time",
description="The maximum time to run the generation for "
"in seconds generation (0.0 = Disabled)",
default=0.0,
min=0.0,
soft_max=10
)
growLeaves: BoolProperty(
name="Grow Leaves",
description="Grow leaves or not",
default=True
)
classes = (
IvyGen,
IvyGenProperties,
CURVE_PT_IvyGenPanel
)
def register():
for cls in classes:
bpy.utils.register_class(cls)
bpy.types.WindowManager.ivy_gen_props = PointerProperty(
type=IvyGenProperties
)
def unregister():
del bpy.types.WindowManager.ivy_gen_props
for cls in reversed(classes):
bpy.utils.unregister_class(cls)
if __name__ == "__main__":
register()