forked from facebook/rocksdb
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhistogram.cc
198 lines (180 loc) · 6.93 KB
/
histogram.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
// Copyright (c) 2013, Facebook, Inc. All rights reserved.
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree. An additional grant
// of patent rights can be found in the PATENTS file in the same directory.
//
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.
#include "util/histogram.h"
#include <cassert>
#include <math.h>
#include <stdio.h>
#include "port/port.h"
namespace rocksdb {
HistogramBucketMapper::HistogramBucketMapper()
:
// Add newer bucket index here.
// Should be alwyas added in sorted order.
// If you change this, you also need to change
// size of array buckets_ in HistogramImpl
bucketValues_(
{1, 2, 3, 4, 5, 6,
7, 8, 9, 10, 12, 14,
16, 18, 20, 25, 30, 35,
40, 45, 50, 60, 70, 80,
90, 100, 120, 140, 160, 180,
200, 250, 300, 350, 400, 450,
500, 600, 700, 800, 900, 1000,
1200, 1400, 1600, 1800, 2000, 2500,
3000, 3500, 4000, 4500, 5000, 6000,
7000, 8000, 9000, 10000, 12000, 14000,
16000, 18000, 20000, 25000, 30000, 35000,
40000, 45000, 50000, 60000, 70000, 80000,
90000, 100000, 120000, 140000, 160000, 180000,
200000, 250000, 300000, 350000, 400000, 450000,
500000, 600000, 700000, 800000, 900000, 1000000,
1200000, 1400000, 1600000, 1800000, 2000000, 2500000,
3000000, 3500000, 4000000, 4500000, 5000000, 6000000,
7000000, 8000000, 9000000, 10000000, 12000000, 14000000,
16000000, 18000000, 20000000, 25000000, 30000000, 35000000,
40000000, 45000000, 50000000, 60000000, 70000000, 80000000,
90000000, 100000000, 120000000, 140000000, 160000000, 180000000,
200000000, 250000000, 300000000, 350000000, 400000000, 450000000,
500000000, 600000000, 700000000, 800000000, 900000000, 1000000000}),
maxBucketValue_(bucketValues_.back()),
minBucketValue_(bucketValues_.front()) {
for (size_t i =0; i < bucketValues_.size(); ++i) {
valueIndexMap_[bucketValues_[i]] = i;
}
}
const size_t HistogramBucketMapper::IndexForValue(const uint64_t value) const {
if (value >= maxBucketValue_) {
return bucketValues_.size() - 1;
} else if ( value >= minBucketValue_ ) {
std::map<uint64_t, uint64_t>::const_iterator lowerBound =
valueIndexMap_.lower_bound(value);
if (lowerBound != valueIndexMap_.end()) {
return lowerBound->second;
} else {
return 0;
}
} else {
return 0;
}
}
namespace {
const HistogramBucketMapper bucketMapper;
}
void HistogramImpl::Clear() {
min_ = bucketMapper.LastValue();
max_ = 0;
num_ = 0;
sum_ = 0;
sum_squares_ = 0;
memset(buckets_, 0, sizeof buckets_);
}
bool HistogramImpl::Empty() { return sum_squares_ == 0; }
void HistogramImpl::Add(uint64_t value) {
const size_t index = bucketMapper.IndexForValue(value);
buckets_[index] += 1;
if (min_ > value) min_ = value;
if (max_ < value) max_ = value;
num_++;
sum_ += value;
sum_squares_ += (value * value);
}
void HistogramImpl::Merge(const HistogramImpl& other) {
if (other.min_ < min_) min_ = other.min_;
if (other.max_ > max_) max_ = other.max_;
num_ += other.num_;
sum_ += other.sum_;
sum_squares_ += other.sum_squares_;
for (unsigned int b = 0; b < bucketMapper.BucketCount(); b++) {
buckets_[b] += other.buckets_[b];
}
}
double HistogramImpl::Median() const {
return Percentile(50.0);
}
double HistogramImpl::Percentile(double p) const {
double threshold = num_ * (p / 100.0);
double sum = 0;
for (unsigned int b = 0; b < bucketMapper.BucketCount(); b++) {
sum += buckets_[b];
if (sum >= threshold) {
// Scale linearly within this bucket
double left_point = (b == 0) ? 0 : bucketMapper.BucketLimit(b-1);
double right_point = bucketMapper.BucketLimit(b);
double left_sum = sum - buckets_[b];
double right_sum = sum;
double pos = 0;
double right_left_diff = right_sum - left_sum;
if (right_left_diff != 0) {
pos = (threshold - left_sum) / (right_sum - left_sum);
}
double r = left_point + (right_point - left_point) * pos;
if (r < min_) r = min_;
if (r > max_) r = max_;
return r;
}
}
return max_;
}
double HistogramImpl::Average() const {
if (num_ == 0.0) return 0;
return sum_ / num_;
}
double HistogramImpl::StandardDeviation() const {
if (num_ == 0.0) return 0;
double variance = (sum_squares_ * num_ - sum_ * sum_) / (num_ * num_);
return sqrt(variance);
}
std::string HistogramImpl::ToString() const {
std::string r;
char buf[200];
snprintf(buf, sizeof(buf),
"Count: %.0f Average: %.4f StdDev: %.2f\n",
num_, Average(), StandardDeviation());
r.append(buf);
snprintf(buf, sizeof(buf),
"Min: %.4f Median: %.4f Max: %.4f\n",
(num_ == 0.0 ? 0.0 : min_), Median(), max_);
r.append(buf);
snprintf(buf, sizeof(buf),
"Percentiles: "
"P50: %.2f P75: %.2f P99: %.2f P99.9: %.2f P99.99: %.2f\n",
Percentile(50), Percentile(75), Percentile(99), Percentile(99.9),
Percentile(99.99));
r.append(buf);
r.append("------------------------------------------------------\n");
const double mult = 100.0 / num_;
double sum = 0;
for (unsigned int b = 0; b < bucketMapper.BucketCount(); b++) {
if (buckets_[b] <= 0.0) continue;
sum += buckets_[b];
snprintf(buf, sizeof(buf),
"[ %7lu, %7lu ) %8lu %7.3f%% %7.3f%% ",
// left
(unsigned long)((b == 0) ? 0 : bucketMapper.BucketLimit(b-1)),
(unsigned long)bucketMapper.BucketLimit(b), // right
(unsigned long)buckets_[b], // count
(mult * buckets_[b]), // percentage
(mult * sum)); // cumulative percentage
r.append(buf);
// Add hash marks based on percentage; 20 marks for 100%.
int marks = static_cast<int>(20*(buckets_[b] / num_) + 0.5);
r.append(marks, '#');
r.push_back('\n');
}
return r;
}
void HistogramImpl::Data(HistogramData * const data) const {
assert(data);
data->median = Median();
data->percentile95 = Percentile(95);
data->percentile99 = Percentile(99);
data->average = Average();
data->standard_deviation = StandardDeviation();
}
} // namespace levedb