forked from mne-tools/mne-python
-
Notifications
You must be signed in to change notification settings - Fork 1
/
defaults.py
195 lines (175 loc) · 7.45 KB
/
defaults.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
# Authors: Alexandre Gramfort <[email protected]>
# Denis A. Engemann <[email protected]>
# Eric Larson <[email protected]>
#
# License: BSD-3-Clause
from copy import deepcopy
DEFAULTS = dict(
color=dict(mag='darkblue', grad='b', eeg='k', eog='k', ecg='m', emg='k',
ref_meg='steelblue', misc='k', stim='k', resp='k', chpi='k',
exci='k', ias='k', syst='k', seeg='saddlebrown', dbs='seagreen',
dipole='k', gof='k', bio='k', ecog='k', hbo='#AA3377', hbr='b',
fnirs_cw_amplitude='k', fnirs_fd_ac_amplitude='k',
fnirs_fd_phase='k', fnirs_od='k', csd='k', whitened='k'),
si_units=dict(mag='T', grad='T/m', eeg='V', eog='V', ecg='V', emg='V',
misc='AU', seeg='V', dbs='V', dipole='Am', gof='GOF',
bio='V', ecog='V', hbo='M', hbr='M', ref_meg='T',
fnirs_cw_amplitude='V', fnirs_fd_ac_amplitude='V',
fnirs_fd_phase='rad', fnirs_od='V', csd='V/m²',
whitened='Z'),
units=dict(mag='fT', grad='fT/cm', eeg='µV', eog='µV', ecg='µV', emg='µV',
misc='AU', seeg='mV', dbs='µV', dipole='nAm', gof='GOF',
bio='µV', ecog='µV', hbo='µM', hbr='µM', ref_meg='fT',
fnirs_cw_amplitude='V', fnirs_fd_ac_amplitude='V',
fnirs_fd_phase='rad', fnirs_od='V', csd='mV/m²',
whitened='Z'),
# scalings for the units
scalings=dict(mag=1e15, grad=1e13, eeg=1e6, eog=1e6, emg=1e6, ecg=1e6,
misc=1.0, seeg=1e3, dbs=1e6, ecog=1e6, dipole=1e9, gof=1.0,
bio=1e6, hbo=1e6, hbr=1e6, ref_meg=1e15,
fnirs_cw_amplitude=1.0, fnirs_fd_ac_amplitude=1.0,
fnirs_fd_phase=1., fnirs_od=1.0, csd=1e3, whitened=1.),
# rough guess for a good plot
scalings_plot_raw=dict(mag=1e-12, grad=4e-11, eeg=20e-6, eog=150e-6,
ecg=5e-4, emg=1e-3, ref_meg=1e-12, misc='auto',
stim=1, resp=1, chpi=1e-4, exci=1, ias=1, syst=1,
seeg=1e-4, dbs=1e-4, bio=1e-6, ecog=1e-4, hbo=10e-6,
hbr=10e-6, whitened=10., fnirs_cw_amplitude=2e-2,
fnirs_fd_ac_amplitude=2e-2, fnirs_fd_phase=2e-1,
fnirs_od=2e-2, csd=200e-4,
dipole=1e-7, gof=1e2),
scalings_cov_rank=dict(mag=1e12, grad=1e11, eeg=1e5, # ~100x scalings
seeg=1e1, dbs=1e4, ecog=1e4, hbo=1e4, hbr=1e4),
ylim=dict(mag=(-600., 600.), grad=(-200., 200.), eeg=(-200., 200.),
misc=(-5., 5.), seeg=(-20., 20.), dbs=(-200., 200.),
dipole=(-100., 100.), gof=(0., 1.), bio=(-500., 500.),
ecog=(-200., 200.), hbo=(0, 20), hbr=(0, 20), csd=(-50., 50.)),
titles=dict(mag='Magnetometers', grad='Gradiometers', eeg='EEG', eog='EOG',
ecg='ECG', emg='EMG', misc='misc', seeg='sEEG', dbs='DBS',
bio='BIO', dipole='Dipole', ecog='ECoG', hbo='Oxyhemoglobin',
ref_meg='Reference Magnetometers',
fnirs_cw_amplitude='fNIRS (CW amplitude)',
fnirs_fd_ac_amplitude='fNIRS (FD AC amplitude)',
fnirs_fd_phase='fNIRS (FD phase)',
fnirs_od='fNIRS (OD)', hbr='Deoxyhemoglobin',
gof='Goodness of fit', csd='Current source density',
stim='Stimulus',
),
mask_params=dict(marker='o',
markerfacecolor='w',
markeredgecolor='k',
linewidth=0,
markeredgewidth=1,
markersize=4),
coreg=dict(
mri_fid_opacity=1.0,
dig_fid_opacity=1.0,
mri_fid_scale=5e-3,
dig_fid_scale=8e-3,
extra_scale=4e-3,
eeg_scale=4e-3, eegp_scale=20e-3, eegp_height=0.1,
ecog_scale=5e-3,
seeg_scale=5e-3,
dbs_scale=5e-3,
fnirs_scale=5e-3,
source_scale=5e-3,
detector_scale=5e-3,
hpi_scale=4e-3,
head_color=(0.988, 0.89, 0.74),
hpi_color=(1., 0., 1.),
extra_color=(1., 1., 1.),
meg_color=(0., 0.25, 0.5), ref_meg_color=(0.5, 0.5, 0.5),
helmet_color=(0.0, 0.0, 0.6),
eeg_color=(1., 0.596, 0.588), eegp_color=(0.839, 0.15, 0.16),
ecog_color=(1., 1., 1.),
dbs_color=(0.82, 0.455, 0.659),
seeg_color=(1., 1., .3),
fnirs_color=(1., .647, 0.),
source_color=(1., .05, 0.),
detector_color=(.3, .15, .15),
lpa_color=(1., 0., 0.),
nasion_color=(0., 1., 0.),
rpa_color=(0., 0., 1.),
),
noise_std=dict(grad=5e-13, mag=20e-15, eeg=0.2e-6),
eloreta_options=dict(eps=1e-6, max_iter=20, force_equal=False),
depth_mne=dict(exp=0.8, limit=10., limit_depth_chs=True,
combine_xyz='spectral', allow_fixed_depth=False),
depth_sparse=dict(exp=0.8, limit=None, limit_depth_chs='whiten',
combine_xyz='fro', allow_fixed_depth=True),
interpolation_method=dict(eeg='spline', meg='MNE', fnirs='nearest'),
volume_options=dict(
alpha=None, resolution=1., surface_alpha=None, blending='mip',
silhouette_alpha=None, silhouette_linewidth=2.),
prefixes={'': 1e0, 'd': 1e1, 'c': 1e2, 'm': 1e3, 'µ': 1e6, 'u': 1e6,
'n': 1e9, 'p': 1e12, 'f': 1e15},
transform_zooms=dict(
translation=None, rigid=None, affine=None, sdr=None),
transform_niter=dict(
translation=(10000, 1000, 100),
rigid=(10000, 1000, 100),
affine=(10000, 1000, 100),
sdr=(10, 10, 5)),
volume_label_indices=(
# Left and middle
4, # Left-Lateral-Ventricle
5, # Left-Inf-Lat-Vent
8, # Left-Cerebellum-Cortex
10, # Left-Thalamus-Proper
11, # Left-Caudate
12, # Left-Putamen
13, # Left-Pallidum
14, # 3rd-Ventricle
15, # 4th-Ventricle
16, # Brain-Stem
17, # Left-Hippocampus
18, # Left-Amygdala
26, # Left-Accumbens-area
28, # Left-VentralDC
# Right
43, # Right-Lateral-Ventricle
44, # Right-Inf-Lat-Vent
47, # Right-Cerebellum-Cortex
49, # Right-Thalamus-Proper
50, # Right-Caudate
51, # Right-Putamen
52, # Right-Pallidum
53, # Right-Hippocampus
54, # Right-Amygdala
58, # Right-Accumbens-area
60, # Right-VentralDC
),
report_stc_plot_kwargs=dict(
views=('lateral', 'medial'),
hemi='split',
backend='pyvistaqt',
time_viewer=False,
show_traces=False,
size=(450, 450),
background='white',
time_label=None,
add_data_kwargs={
'colorbar_kwargs': {
'label_font_size': 12,
'n_labels': 5
}
}
)
)
def _handle_default(k, v=None):
"""Avoid dicts as default keyword arguments.
Use this function instead to resolve default dict values. Example usage::
scalings = _handle_default('scalings', scalings)
"""
this_mapping = deepcopy(DEFAULTS[k])
if v is not None:
if isinstance(v, dict):
this_mapping.update(v)
else:
for key in this_mapping:
this_mapping[key] = v
return this_mapping
HEAD_SIZE_DEFAULT = 0.095 # in [m]
_BORDER_DEFAULT = 'mean'
_INTERPOLATION_DEFAULT = 'cubic'
_EXTRAPOLATE_DEFAULT = 'auto'